Answer:
E = 31.329 N/C.
Explanation:
The differential electric field
at the center of curvature of the arc is
<em>(we have a cosine because vertical components cancel, leaving only horizontal cosine components of E. )</em>
where
is the radius of curvature.
Now
,
where
is the charge per unit length, and it has the value

Thus, the electric field at the center of the curvature of the arc is:


Now, we find
and
. To do this we ask ourselves what fraction is the arc length 3.0 of the circumference of the circle:

and this is
radians.
Therefore,

evaluating the integral, and putting in the numerical values we get:


It will take the butterfly 2.3 km to reach the destination
Answer:

<em>The potential environmental impacts associated with solar power—land use and habitat loss, water use, and the use of hazardous materials in manufacturing—can vary greatly depending on the technology, which includes two broad categories: photovoltaic (PV) solar cells or concentrating solar thermal plants (CSP).</em>
Explanation:
I just answer the second question
Answer:
is the drop in the water temperature.
Explanation:
Given:
- mass of ice,

- mass of water,

Assuming the initial temperature of the ice to be 0° C.
<u>Apply the conservation of energy:</u>
- Heat absorbed by the ice for melting is equal to the heat lost from water to melt ice.
<u>Now from the heat equation:</u>

......................(1)
where:
latent heat of fusion of ice 
specific heat of water 
change in temperature
Putting values in eq. (1):

is the drop in the water temperature.