Answer:
True The grid with more slits gives more angle separation increases
True. The grating with 10 slits produces better-defined (narrower) peaks
Explanation:
Such a system can be seen as a diffraction network in this case with different number of lines per unit length, the expression for the constructive interference of a diffraction network is
d sin θ = m λ
where d is the distance between slits or lines, m the order of diffraction and λ the wavelength.
For network with 5 slits
d = 1/5 = 0.2
For the network with 10 slits
d = 1/10 = 0.1
let's calculate the separation (teat) for each one
θ = sin⁻¹ (m λ / d)
for 5 slits
θ₅ = sin⁻¹ (m λ 5)
for 10 slits
θ₁₀ = sin⁻¹ (m λ 10)
we can appreciate that for more slits the angle increases
the intensity of a series of slits is
I = I₀ sin²2 (N d/2) / sin² d/2)
when there are more slits (N) the peaks have greater intensity and are more acute (half width decreases)
let's analyze the claims
False
True The grid with more slits gives more angle separation increases
False
True The expression for the intensity of the diffraction peaks the intensity of the peaks increases with the number of slits as well as their spectral width decreases
False
Lear vv
F
B
C
D
A
E
G
greatest pressure ^^
I’m really sorry if I’m wrong
Answer:
77%
Explanation:
efficiency= work output/work input X 100%
e = 1,200j/ 1,550 j x100%
e = 1,200/1,550= 0.77
e = 0.77 x 100%
e = 77%
the wavelength equation is
speed (of light in this
case)= wavelength (m) x frequency
3x10^8m/s / .07m = f
frequency= 4 285 714 286
hertz
b) Total distance= 4.8 km
(4,800 m)
Speed = 3x10^8 m/s
d=st
t= d/s
t= 4,800 m/3x10^8m/s
<span>t= 1x10^-5 seconds</span>