Answer:
False
Explanation:
Atomic mass (Also called Atomic Weight, although this denomination is incorrect, since the mass is property of the body and the weight depends on the gravity) Mass of an atom corresponding to a certain chemical element). The uma (u) is usually used as a unit of measure. Where u.m.a are acronyms that mean "unit of atomic mass". This unit is also usually called Dalton (Da) in honor of the English chemist John Dalton.
It is equivalent to one twelfth of the mass of the nucleus of the most abundant isotope of carbon, carbon-12. It corresponds roughly to the mass of a proton (or a hydrogen atom). It is abbreviated as "uma", although it can also be found by its English acronym "amu" (Atomic Mass Unit). However, the recommended symbol is simply "u".
<u>
The atomic masses of the chemical elements are usually calculated with the weighted average of the masses of the different isotopes of each element taking into account the relative abundance of each of them</u>, which explains the non-correspondence between the atomic mass in umas, of an element, and the number of nucleons that harbors the nucleus of its most common isotope.
Answer:
Explanation:
Since energy is conserved:
2
mu
2
=
2
mv
2
+mgh
⇒u
2
=v
2
+2gh
⇒(3)
2
=v
2
+2(9.8)(0.5−0.5cos60)
⇒v=2m/s
Radiation damages the cells that make up the human body, it can even cause cancer
Answer:
<u>Question 2</u>
<u>Part (a)</u>
Chlorine: type of compound = chloride
Oxygen: type of compound = oxide
<u>Part (b)</u>
The iron reacts with water and oxygen to form rust.
A water molecule is made up of two hydrogen atoms joined to one oxygen atom: Di-hydrogen oxide.
<u>Question 3</u>
This circuit is in parallel.
The current in a parallel circuit splits into different branches then combines again before it goes back into the supply.
We are told that A₁ = 0.8 A
As the lamps have <u>equal resistance</u>, the current splits equally:
A₂ = 0.4 A
A₃ = 0.4 A
Then combines again:
A₄ = 0.8 A
Answer:
They would land at the same time
Explanation:
They would land at the same exact time.
As weird, impossible and unbelievable as it appears. When in a vacuum, every weight, body and material when released from the same height would land on the ground at the same time. This also means that like in the question, a feather and a ball would land at the same time. And just for illustrations as well, a feather and a car would land at the same time as well.