Fourth root of 35. You take the denominator and make that the number above the root of sign and the numerator is how many times it is multiplied
1 inch = 13.5 feet
5 inches = 5 * 13.5 = 67.5 feet
Answer:
set y = 0 to get the x intercept,,,,,,,,,, 0 = 2x -3 = x = 3/2 or 1.5
Step-by-step explanation:
Answer:
6250
Step-by-step explanation:
Hope the answer is correct.
![\bf 512~~,~~\stackrel{512\cdot \frac{1}{2}}{256}~~,~~...4](https://tex.z-dn.net/?f=%20%5Cbf%20512~~%2C~~%5Cstackrel%7B512%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%7D%7B256%7D~~%2C~~...4%20)
so, as you can see above, the common ratio r = 1/2, now, what term is +4 anyway?
![\bf n^{th}\textit{ term of a geometric sequence}\\\\a_n=a_1\cdot r^{n-1}\qquad \begin{cases}n=n^{th}\ term\\a_1=\textit{first term's value}\\r=\textit{common ratio}\\----------\\r=\frac{1}{2}\\a_1=512\\a_n=+4\end{cases}](https://tex.z-dn.net/?f=%20%5Cbf%20n%5E%7Bth%7D%5Ctextit%7B%20term%20of%20a%20geometric%20sequence%7D%5C%5C%5C%5Ca_n%3Da_1%5Ccdot%20r%5E%7Bn-1%7D%5Cqquad%20%5Cbegin%7Bcases%7Dn%3Dn%5E%7Bth%7D%5C%20term%5C%5Ca_1%3D%5Ctextit%7Bfirst%20term%27s%20value%7D%5C%5Cr%3D%5Ctextit%7Bcommon%20ratio%7D%5C%5C----------%5C%5Cr%3D%5Cfrac%7B1%7D%7B2%7D%5C%5Ca_1%3D512%5C%5Ca_n%3D%2B4%5Cend%7Bcases%7D%20)
![\bf 4=512\left( \cfrac{1}{2} \right)^{n-1}\implies \cfrac{4}{512}=\left( \cfrac{1}{2} \right)^{n-1}\\\\\\\cfrac{1}{128}=\left( \cfrac{1}{2} \right)^{n-1}\implies \cfrac{1}{2^7}=\left( \cfrac{1}{2} \right)^{n-1}\implies 2^{-7}=\left( 2^{-1}\right)^{n-1}\\\\\\(2^{-1})^7=(2^{-1})^{n-1}\implies 7=n-1\implies \boxed{8=n}](https://tex.z-dn.net/?f=%20%5Cbf%204%3D512%5Cleft%28%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E%7Bn-1%7D%5Cimplies%20%5Ccfrac%7B4%7D%7B512%7D%3D%5Cleft%28%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E%7Bn-1%7D%5C%5C%5C%5C%5C%5C%5Ccfrac%7B1%7D%7B128%7D%3D%5Cleft%28%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E%7Bn-1%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B2%5E7%7D%3D%5Cleft%28%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E%7Bn-1%7D%5Cimplies%202%5E%7B-7%7D%3D%5Cleft%28%202%5E%7B-1%7D%5Cright%29%5E%7Bn-1%7D%5C%5C%5C%5C%5C%5C%282%5E%7B-1%7D%29%5E7%3D%282%5E%7B-1%7D%29%5E%7Bn-1%7D%5Cimplies%207%3Dn-1%5Cimplies%20%5Cboxed%7B8%3Dn%7D%20)
so is the 8th term, then, let's find the Sum of the first 8 terms.
![\bf \qquad \qquad \textit{sum of a finite geometric sequence}\\\\S_n=\sum\limits_{i=1}^{n}\ a_1\cdot r^{i-1}\implies S_n=a_1\left( \cfrac{1-r^n}{1-r} \right)\quad \begin{cases}n=n^{th}\ term\\a_1=\textit{first term's value}\\r=\textit{common ratio}\\----------\\r=\frac{1}{2}\\a_1=512\\n=8\end{cases}](https://tex.z-dn.net/?f=%20%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7Bsum%20of%20a%20finite%20geometric%20sequence%7D%5C%5C%5C%5CS_n%3D%5Csum%5Climits_%7Bi%3D1%7D%5E%7Bn%7D%5C%20a_1%5Ccdot%20r%5E%7Bi-1%7D%5Cimplies%20S_n%3Da_1%5Cleft%28%20%5Ccfrac%7B1-r%5En%7D%7B1-r%7D%20%5Cright%29%5Cquad%20%5Cbegin%7Bcases%7Dn%3Dn%5E%7Bth%7D%5C%20term%5C%5Ca_1%3D%5Ctextit%7Bfirst%20term%27s%20value%7D%5C%5Cr%3D%5Ctextit%7Bcommon%20ratio%7D%5C%5C----------%5C%5Cr%3D%5Cfrac%7B1%7D%7B2%7D%5C%5Ca_1%3D512%5C%5Cn%3D8%5Cend%7Bcases%7D%20)
![\bf S_8=512\left[ \cfrac{1-\left( \frac{1}{2} \right)^8}{1-\frac{1}{2}} \right]\implies S_8=512\left(\cfrac{1-\frac{1}{256}}{\frac{1}{2}} \right)\implies S_8=512\left(\cfrac{\frac{255}{256}}{\frac{1}{2}} \right)\\\\\\S_8=512\cdot \cfrac{255}{128}\implies S_8=1020](https://tex.z-dn.net/?f=%20%5Cbf%20S_8%3D512%5Cleft%5B%20%5Ccfrac%7B1-%5Cleft%28%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright%29%5E8%7D%7B1-%5Cfrac%7B1%7D%7B2%7D%7D%20%5Cright%5D%5Cimplies%20S_8%3D512%5Cleft%28%5Ccfrac%7B1-%5Cfrac%7B1%7D%7B256%7D%7D%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20%5Cright%29%5Cimplies%20S_8%3D512%5Cleft%28%5Ccfrac%7B%5Cfrac%7B255%7D%7B256%7D%7D%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20%5Cright%29%5C%5C%5C%5C%5C%5CS_8%3D512%5Ccdot%20%5Ccfrac%7B255%7D%7B128%7D%5Cimplies%20S_8%3D1020%20)