<span>The higher the value of the coefficient of friction, the more the resistance to sliding. The answer is the more the resistance to sliding. The</span> coefficient of friction<span> is a measure of how easily one object moves over another object. It is a ratio of: Force to move the object / weight of the object (or Normal Force)</span>
Answer:
1920Joules
Explanation:
The formula for calculating the kinetic energy of a body is expressed as;
KE = 1/2 mv²
m isthe mass
V is the speed
For the two masses, the combined KE is expressed as;
KE = 1/2(m1+m2)v²
KE = 1/2(45+15)(8)²
KE = 1/2 * 60 * 64
KE = 30 * 64
KE = 1920J
Hence the combined kinetic energy of the boy and the bicycle is 1920Joules
There will not be enough momentum from the first hill to cross another hill if he same or larger size because of the way potential energy and kinetic energy works it will not be able go as high as it could go on he fist hill.
This question is incomplete, the complete question is;
A parallel-plate capacitor is made from two aluminum-foil sheets, each 3.0 cm wide and 5.00 m long. Between the sheets is a mica strip of the same width and length that is 0.0225 mm thick. What is the maximum charge?
(The dielectric constant of mica is 5.4, and its dielectric strength is 1.00×10⁸ V/m)
Answer: the maximum charge q is 716.85 μF
Explanation:
Given data;
with = 3.0 cm = 0.03
breathe = 5.0 m
Area = 0.03 × 5 = 0.15 m²
dielectric strength E = 1.00 × 10⁸
∈₀ = 8.85 × 10⁻¹²
constant K = 5.4
maximum charge = ?
the capacitor C = KA∈₀ / d
q = cv so c = q/v
now
q/v = KA∈₀ / d
q = vKA∈₀/d = EKA∈₀
we substitute
q = (1.00 × 10⁸) × 5.4 × 0.15 × 8.85 × 10⁻¹²
q = 716.85 × 10⁻⁶ F
q = 716.85 μF
the maximum charge q is 716.85 μF
Answer:
The voltage across the resistor is zero, and the voltage across the capacitor is equal to the terminal voltage of the battery.
Explanation:
This is because when a capacitor is charged no current or voltage flows through it so it will have a voltage equal to the terminal voltage of the battery