There should be a small amount of play in the wheel when the steering is locked. Gently pull the key from the ignition while you slowly jiggle the steering wheel back and forth. If this is the cause of the problem, the key should come out after a little effort.
Answer:
mass × gravity ×height. so....that.. Ep = mgh. Ep= 35×9.8×5. Ep = 1715.
Explanation:
Answer:
The corresponding magnetic field is
Explanation:
From the question we are told that
The electric field amplitude is 
Generally the magnetic field amplitude is mathematically represented as

Where c is the speed of light with a constant value

So


Since 1 T is equivalent to 

Answer:
The applied torque is 3.84 N-m.
Explanation:
Given that,
Moment of inertia of the wheel is 
Initial speed of the wheel is 0 (at rest)
Final angular speed is 25 rad/s
Time, t = 13 s
The relation between moment of inertia and torque is given by :

So, the applied torque is 3.84 N-m.
I'm not sure if this is correct but it's what I'll do
This is free-fall problem.
Stone A is thrown upward, at the point it falls down to the place where it was thrown, the velocity is -15m/s.
Now I choose the bridge is the origin. From the bridge, stone A and B fall the same distance which means Ya = Yb ( vertical distance )
Ya = Vo(t + 2) + 1/2a(t+2)^2
= -15(t + 2) + 1/2(9.8)(t^2 + 4t + 4)
= -15t - 30 + 4.5(t^2 + 4t + 4)
= -15t - 30 + 4.5t^2 + 18t + 18
= 4.5t^2 +3t - 12
Yb = Vo(t) + 1/2a(t)^2
= 0 + 4.5t^2
4.5t^2 = 4.5t^2 +3t - 12
0 = 3t - 12
4 = t
Time for Stone B is 4s
Time for Stone A is 6s