The term that describes the number of thoughs that pass a point in a given amount of time is FREQUENCY.
In wave theory, frequency refers to the number of wave that pass through a fixed point in a given amount of time. Frequency is usually measure in Hertz. The mathematical formula for finding frequency is:
F = Velocity of wave / wavelength of wave.
Answer
A. Yes, because they did several tests with the soccer balls and recorded their observations. B. Yes, because every student kicked
Explanation:
All objects are either <u>charged</u> or <u>uncharged</u><u>.</u> Charged objects can have a <u>positive</u> or <u>negative</u> charge. Uncharged objects will have a <u>no</u> charge. Charged objects that have the same charges will <u>repel</u> each other. Charged objects with opposite charges will <u>a</u><u>t</u><u>t</u><u>r</u><u>a</u><u>c</u><u>t</u> each other. Uncharged objects can become <u>charged</u><u>.</u> The charge an object has gives it <u>electric</u> energy. The charged object’s ability to attract (pull) or repel (push) other objects is called <u>electrostatic</u> force.
Answer:
W = 30.38 N
Explanation:
Given that,
Mass of a rock, m = 3.1 kg
We need to find the weight of the rock on the surface of Earth. Weight of an object is given by :
W = mg
g is the acceleration due to gravity, g = 9.8 m/s²
W = 3.1 kg × 9.8 m/s²
= 30.38 N
So, the weight of the rock on the Earth is 30.38 N.
Answer:
0.786 Hz, 1.572 Hz, 2.358 Hz, 3.144 Hz
Explanation:
The fundamental frequency of a standing wave on a string is given by

where
L is the length of the string
T is the tension in the string
is the mass per unit length
For the string in the problem,
L = 30.0 m

T = 20.0 N
Substituting into the equation, we find the fundamental frequency:

The next frequencies (harmonics) are given by

with n being an integer number and f being the fundamental frequency.
So we get:


