Answer:
Work= -7.68×10⁻¹⁴J
Explanation:
Given data
q₁=q₂=1.6×10⁻¹⁹C
r₁=2.00×10⁻¹⁰m
r₂=3.00×10⁻¹⁵m
To find
Work
Solution
The work done on the charge is equal to difference in potential energy
W=ΔU
![Work=U_{1}-U_{2}\\ Work=-kq_{1}q_{2}[\frac{1}{r_{2}}-\frac{1}{r_{1}} ]\\Work=(-9*10^{9})*(1.6*10^{-19} )^{2}[\frac{1}{3.0*10^{-15} }-\frac{1}{2*10^{-10} } ]\\ Work=-7.68*10^{-14}J](https://tex.z-dn.net/?f=Work%3DU_%7B1%7D-U_%7B2%7D%5C%5C%20Work%3D-kq_%7B1%7Dq_%7B2%7D%5B%5Cfrac%7B1%7D%7Br_%7B2%7D%7D-%5Cfrac%7B1%7D%7Br_%7B1%7D%7D%20%5D%5C%5CWork%3D%28-9%2A10%5E%7B9%7D%29%2A%281.6%2A10%5E%7B-19%7D%20%29%5E%7B2%7D%5B%5Cfrac%7B1%7D%7B3.0%2A10%5E%7B-15%7D%20%7D-%5Cfrac%7B1%7D%7B2%2A10%5E%7B-10%7D%20%7D%20%5D%5C%5C%20%20Work%3D-7.68%2A10%5E%7B-14%7DJ)
Answer:
D= 1999.2 m
Explanation:
Given that
Average velocity ,v= 0.98 m/s
time ,t= 34 min
We know that
1 min = 60 s
That is why
t= 34 x 60 =2040 s
We know that
Displacement = Average velocity x time
D= v t
Now by putting the values in the above equation
D= 0.98 x 2040 m
D= 1999.2 m (eastward)
The direction of the displacement will be towards eastward.
That is why the displacement will be 1999.2 m or we can say that 1.9992 km.
The exact magnification of the objects is calculated by dividing the cinema. We calculate it by diving the erect image size by the object size. From the given above, we find the exact magnification by dividing 5.0 cm by 1.0 cm. Thus, the answer would be 5.
Answer:
What is the question?
Explanation:
If you tell me the question I can help.
Horizontal velocity: 81.9 km/h
Vertical velocity: 57.4 km/h
Explanation:
We can solve this problem by resolving the velocity vector into its component along the horizontal and vertical direction.
The horizontal velocity of the stunt bike is given by:

where
v = 100 km/h is the magnitude of the velocity
is the angle of projection
Substituting, we find

The vertical velocity instead is given by

where


Substituting,

Learn more about vector components:
brainly.com/question/2678571
#LearnwithBrainly