Answer:
Benzoic acid is the stronger acid
Explanation:
Weak acids do not dissociate completely in the solution. They exists in equilibrium with their respective ions in the solution.
The extent of dissociation of the acid furnising hydrogen ions can be determined by using dissociation constant of acid (
).
Thus for a weak acid, HA

The
is:
![K_a= \frac{[A^-][H^+]}{[HA]}](https://tex.z-dn.net/?f=K_a%3D%20%5Cfrac%7B%5BA%5E-%5D%5BH%5E%2B%5D%7D%7B%5BHA%5D%7D)
The more the
, the more the acid dissociates, the more the stronger is the acid.
Also,
is defined as the negative logarithm of
.
So, more the
, less is the
and vice versa
All can be summed up as:
The less the value of
, the more the
is and the more the acid dissociates and the more the stronger is the acid.
Given,
of acetic acid = 54.7
of benzoic acid = 54.2
of benzoic acid <
of acetic acid
So, benzoic acid is the stronger acid.
6.02 times 10 to the 23 power, which is Avogadros number
In the equation,
2Al(s) + 3Cl2(g) —> 2AlCl3(s),
the large number "3" in front of Cl2 indicates the the number of moles of Chlorine molecules needed to balance the equation.
Hope this will help you.
If you like my answer. Please mark it as brainliest And Be my follower if possible.
Explanation :
As we know that Mendeleev arranged the elements in horizontal rows and vertical columns of a table in order of their increasing relative atomic weights.
He placed the elements with similar nature in the same group.
According to the question, the atomic weight of iodine is less than the atomic weight of tellurium. So according to this, iodine should be placed before tellurium in Mendeleev's tables. But Mendeleev placed iodine after tellurium in his original periodic table.
However, iodine has similar chemical properties to chlorine and bromine. So, in order to make iodine queue up with chlorine and bromine in his periodic table, Mendeleev exchanged the positions of iodine and tellurium.
As we know that the positions of iodine and tellurium were reversed in Mendeleev's table because iodine has one naturally occurring isotope that is iodine-127 and tellurium isotopes are tellurium-128 and tellurium-130.
Due to high relative abundance of tellurium isotopes gives tellurium the greater relative atomic mass.