Depression of a freezing point of the solutions depends on the number of particles of the solute in the solution.
1 mol of C6H12O6 after dissolving in water still be 1 mol, because C6H12O6 does no dissociate in water.
1 mol of C2H5OH after dissolving in water still be 1 mol, because C2H5OH does no dissociate in water.
1 mol of NaCl after dissolving in water gives 2 mol of particles (ions), because NaCl is a strong electrolyte(as salt) and completely dissociates in water.
NaCl ----->Na⁺ + Cl⁻
1 mol of CH3COOH after dissolving in water gives more than 1 mol but less than 2 moles, because CH3COOH is a weak electrolyte (weak acid) and dissociates only partially.
So, most particles of the solute is going to be in the solution of NaCl,
so<span> the lowest freezing point has the aqueous solution of NaCl.</span>
[CO] = 1 mol / 2L = 0.5 M
[
According to the equation:
and by using the ICE table:
CO(g) + H2O(g) ↔ CO2(g) + H2(g)
initial 0.5 0.5 0 0
change -X -X +X +X
Equ (0.5-X) (0.5-X) X X
when Kc = X^2 * (0.5-X)^2
by substitution:
1.845 = X^2 * (0.5-X)^2 by solving for X
∴X = 0.26
∴ [CO2] = X = 0.26
The volume that sulfur dioxide will occupy with a volume of 652 mL at 40.0°C and 0.75 atm is 0.019moles. Details about volume can be found below.
<h3>How to calculate volume?</h3>
The volume of a gas can be calculated using the following formula:
PV = nRT
- P = pressure
- V = volume
- n = number of moles
- R = gas law constant
- T = temperature
0.75 × 0.652 = n × 0.0821 × 313
0.489 = 25.69n
n = 0.489/25.69
n = 0.019moles
Therefore, the volume that sulfur dioxide will occupy with a volume of 652 mL at 40.0°C and 0.75 atm is 0.019moles.
Learn more about volume at: brainly.com/question/1578538
#SPJ1
Neutrons actually don't carry an electrical charge, which is why they are called neutrons because they are "Neutral".