Answer:
1.87x10⁻³ M SO₄²⁻
Explanation:
The reaction of SO₄²⁻ with Ba²⁺ (From Ba(NO₃)₂) is:
SO₄²⁻(aq) + Ba²⁺(aq) → BaSO₄(s)
<em>Where 1 mole of SO₄²⁻ reacts per mole of Ba²⁺</em>
<em />
To reach the end point in this titration, we need to add the same moles of Ba²⁺ that the moles that are of SO₄²⁻.
Thus, to find molarity of SO₄²⁻ we need to find first the moles of Ba²⁺ added (That will be the same of SO₄²⁻). And as the volume of the initial sample was 100mL we can find molarity (As ratio of moles of SO₄²⁻ per liter of solution).
<em>Moles Ba²⁺:</em>
7.48mL = 7.48x10⁻³L ₓ (0.0250moles / L) = 1.87x10⁻⁴ moles of Ba²⁺ = Moles of SO₄²⁻
<em>Molarity SO₄²⁻:</em>
As there are 1.87x10⁻⁴ moles of SO₄²⁻ in 100mL = 0.1L, molarity is:
1.87x10⁻⁴ moles of SO₄²⁻ / 0.1L =
<h3> 1.87x10⁻³ M SO₄²⁻</h3>
Answer:
Six C atoms (C₆); five H atoms (H₅); one N atom (N); no O atoms
Explanation:
The rule of 13 states that the formula of a compound is a multiple n of 13 (the molar mass of CH) plus a remainder r.
MF = CₙHₙ₊ᵣ
Y has a molecular mass of 91 u
91/13 =7r0
The formula can't be C₇H₇ because a hydrocarbon must have an even number of H atoms,
The odd mass and the odd number of H atoms make it reasonable to add an N atom and subtract CH₂ (CH₂ = 14):
C₇H₇ + N - CH₂ = C₆H₅N
Check:
6C = 6 × 12.000 = 72.000 u
5H = 5 × 1.008 = 5.040
1N = 1 × 14.003 = <u>14.003 </u>
TOTAL = 91.043 u
This is excellent agreement with the observed mass of 91.0425 u.
There are six C atoms (C₆)
There are five H atoms (H₅)
There is one N atom (N)
There are no O atoms.
13 - Periodic table
14 - Dimitri mandeleev
15 - groups
Mark me brainiest pls it right answer
Answer:
The answer is B. Van der Waals forces are weaker than ionic and covalent bonds.
Explanation:
In general, if we arrange these molecular forces from the strongest to weakest, it would be like this:
Covalent bonds > Ionic bonds > Hydrogen bonds > Dipole-Dipole Interactions > Van der Waals forces
Covalent bonds are known to have the strongest and most stable bonds since they go deep and into the inter-molecular state. A diamond is an example of a compound with this characteristic bond.
Ionic bonds are the next strongest molecular bond following covalent bonds. This is due to the protons and electrons causing an electro-static force which results to the strong bonds. An example would be Sodium Chloride (NaCl), which when separated is Na⁺ and Cl⁻.
Van der Waals forces, also known as Dispersion forces, are the weakest type of molecular bonds. They are only formed through residual molecular attractions when molecules pass by each other. It doesn't even last long due to the uneven electron dispersion. It can be made stronger by adding more electrons in the molecule. This kind of molecular bonds appear in non-polar molecules such as carbon dioxide.
HOPE THIS HELPS!!!!!!!!!!!!!!
///////////////////////////////////////////////////////////////////////////////////////////