Answer:
Option A and D are correct.
Unstable species react rapidly.
Stable species do not react rapidly.
Explanation:
The complete question is attached to this solution.
The more stable a reactant is, the less reactive it will be. A stable reactant has a very stable structure in which it will avoid any perturbations. And for a reaction to occur, the bonds in the reactant must break down to form the products. A stable reactant has very strong bonds that aren't easy to break down, hence, reactions involving very stable reactants do not proceed rapidly.
And the more unstable a reactant specie is, the more rapidly it reacts. This is why the reaction involving the less stable isotope of carbon; Carbon-14 is very rapid. It is the same reason as explained above that is responsible for this. The bond between unstable species are not strong and are easily breakable, thereby leading to a quick reaction.
Hope this Helps!!!
Answer:
The main difference is their energy level, 2s orbital is higher than 1s orbital.
Answer:
See explanation
Explanation:
The principle of conservation of energy states that energy can neither be created nor destroyed but can be converted from one form to another. Hence, chemical energy in a battery can be converted to electrical energy.
Usually, the conversion of energy from one form to another is not 100% efficient according to the second law of thermodynamics. Some energy is wasted in the process, sometimes as heat.
Hence, in an ideal situation where no heat energy is produced; all the chemical energy is converted to electrical energy (100% energy conversion). There will be no energy loss if no heat is produced.
Answer:
When a substance is heated ,the kinetic energy of its molecules also increase.
Explanation:
K.E is directly proportional to T
The molecular formula of the compound is C12H15O3 hence the molar mass of the compound is 207 g/mol.
We need to obtain the number of moles of carbon, hydrogen and oxygen in the compound;
Carbon = 24.91 g/44g/mol × 1 mole of carbon = 0.566 moles
Mass of carbon = 0.566 moles × 12 g/mol = 6.792 g
Number of moles of hydrogen = 6.522 g/18 g/mol × 2 moles = 0.725 moles
Mass of hydrogen = 0.725 moles × 1 g/mol = 0.725 g
Mass of oxygen = 10 - (6.792 g + 0.725 g) = 2.483 g
Number of moles of oxygen = 2.483 g/16 g/mol = 0.155 moles
Now we must divide through by the lowest number of moles;
C - 0.566/0.155 H - 0.725/0.155 O - 0.155/0.155
C - 4 H - 5 O - 1
The simplest formula is C4H5O Recall that the molar mass of the compound lies between 150.0 and 220.0 g/mol
4(12) + 5(1) + 16 = 69
Hence; n = 3 and the molecular formula of the compound is C12H15O3
The molar mass of the compound is; 12(12) + 15(1) + 3(16) = 207 g/mol
Learn more: brainly.com/question/15180604