Answer: low temperature
Explanation:-
S.I or M.K.S is a system for defining physical units as meter, kilogram, second, ampere, kelvin or celcius, candela, and mole together with a set of prefixes to indicate multiplication or division by a power of ten for measuring length, mass, time , current, temperature and amount of substance respectively.
Given :
lake length = 563 kilometers = 
High temperature =
Low temperature =
annual precipitation =762 mm= 
Thus low temperature in units of Fahrenheit is not an S.I unit of measurement.
1. At constant tempaerature and pressure, 3 tablets produce 600cm^3 of gas
Thus calculating for 1 tablet that produces 600 / 3 = 200 cm^3
So now two tablets produce 200 x 2 = 400 cm^3
2. We have the equation PV = nRT, n being the number of moles
Pressure P = 1,000 kPa
Volume V = 3 L
R = 8.31 L kPa/mol-K
Temperature T = 298 K
n = PV / RT = (1000 x 3) / (8.31 x 298) = 3000 / 2476.38 = 1.21 moles
Number of moles = 1.21 moles.
Answer:
See explanation
Explanation:
a) The magnitude of intermolecular forces in compounds affects the boiling points of the compound. Neon has London dispersion forces as the only intermolecular forces operating in the substance while HF has dipole dipole interaction and strong hydrogen bonds operating in the molecule hence HF exhibits a much higher boiling point than Ne though they have similar molecular masses.
b) The boiling points of the halogen halides are much higher than that of the noble gases because the halogen halides have much higher molecular masses and stronger intermolecular forces between molecules compared to the noble gases.
Also, the change in boiling point of the hydrogen halides is much more marked(decreases rapidly) due to decrease in the magnitude of hydrogen bonding from HF to HI. The boiling point of the noble gases increases rapidly down the group as the molecular mass of the gases increases.
Answer:
Explanation:
From the net ionic equation
Ba2+(aq) + SO42-(aq) ==> BaSO4(s) we see that 1 mole Ba2+ reacts with 1 mole SO42- to -> 1 mol BaSO4
Find moles of Ba2+ used: 0.250 moles/L x 0.0323 L = 0.008075 moles Ba2+
Find moles SO42- present: 0.008075 moles Ba2+ x 1 mol SO42-/1 mol Ba2+ = 0.008075 mol SO42-
Find mass of Na2SO4 present: 0.008075 mol SO42- x 1 mol Na2SO4/1 mol SO42- x 142.04 Na2SO4/mole = 1.14698 g = 1.15 g Na2SO4 (to 3 significant figures)