Answer:
- <u>TRUE:</u> <em>Percent concentration is one of the most common and basic concentration measurement used by general public</em>
Explanation:
In chemistry there are many <em>concentration measurements</em> used to describe the mixtures. Some of them are, percent, molarity, molality, and molar fraction, among others.
Percent concentration is a popular one because it is commonly understood and used by the non specialist people, i.e. general public.
The percent concentration of a component is defined as: (amount of component in the mixture / amount of mixture) × 100.
The amounts may be measured in mass units (e.g grams) or volume units (e.g. mililiters).
For solutions, mass percent concentration is:
- % = (mass of solute / mass of solution) × 100.
And voluem percen contration is:
- % = (volume of solute / volume of solution) × 100
Since percentage is used in many profesional and personal activities, most persons use it.
For example, rubbing alcohol, that everyone buys in pharmacies, is 70%; vinager, used in the food, is acetic acid at 5% - 8%.
A) C2H6O1
To find the emperical formula, divide each mole value by the smallest
For carbon, 0.013/0.0065 = 2
For hydrogen, 0.038/0.0065= 6
For oxygen, 0.0065/0.0065= 1
Emperical formula = C2H6O1
I believe it is <span>d. the bonds of both the reactants and the products are formed.</span>
The answer Is C.the layer of rock they're found in
Cryo-EM is used to preserve and characterize cycled positive electrodes. Under regular cycling conditions, there isn't an intimate coating layer like CEI.A small electrical short can cause a stable conformal CEI to form in place. The conformal CEI's chemistry is revealed by EELS and cryo-(S)TEM.
It has been assumed that the intimate coating layer generated on the positive electrode, known as cathode electrolyte interphase (CEI), is crucial. However, there are still numerous questions about CEI. This results from the absence of useful instruments to evaluate the chemical and structural characteristics of these delicate interphases at the nanoscale. Here, using cryogenic electron microscopy, we establish a methodology to maintain the natural condition and directly see the interface on the positive electrode.
Learn more about Cathode electrolyte interphase here:
brainly.com/question/861659
#SPJ4