Answer:<span>Humid air is lighter, so it has lower pressure.
The reason is the molecules of water are H2O, whose molar mass is 18 g/mol.
These molecules displaces molecules of N2 and O2, whose molar masses are:
N2: 2*14g/mol = 28 g/mol, and
O2: 2*16g/mol = 32 g/mol.
Then molecules of 28g/mol and 32 g/mol are being replaced with molecules of 18g/mol, leading to a lower weight of the same volume of air, which results in lower pressure.
</span>
The Indian Ocean.
The rest of your options are not oceans, they are bodies of water. (e.g: lakes,rivers,gulfs)
<h2>
Answer: The half-life of beryllium-15 is 400 times greater than the half-life of beryllium-13.</h2>
Explanation:
The half-life
of a radioactive isotope refers to its decay period, which is the average lifetime of an atom before it disintegrates.
In this case, we are given the half life of two elements:
beryllium-13: 
beryllium-15: 
As we can see, the half-life of beryllium-15 is greater than the half-life of beryllium-13, but how great?
We can find it out by the following expression:

Where
is the amount we want to find:


Finally:

Therefore:
The half-life of beryllium-15 is <u>400 times greater than</u> the half-life of beryllium-13.
Answer:
Astronomer
Explanation:
A scientist who studies the objects in the sky, including planets, galaxies, black holes, and stars, is called an astronomer. These days, the terms astronomer and astrophysicist are used interchangeably, to talk about any physicist who specializes in celestial bodies and the forces that affect them.
Answer:
14.8 m
Explanation:
S= ut +
a
where u = initial velocity
S= (0
)(2
) +
(7.4
)(2
)
S=
(7.4
)(2
)
S=14.8 m