Answer:
A. 0.289g/mL
Explanation:
Using the equation for density which is d = m/v or density = mass/volume, we input 1.3g/4.5mL and get 0.289g/mL.
You performed 0 work for the fact that work means the distance of movement made on an object not the amount of force it is exposed to. 0 work because it didn't move
<span> Using conservation of energy
Potential Energy (Before) = Kinetic Energy (After)
mgh = 0.5mv^2
divide both sides by m
gh = 0.5v^2
h = (0.5V^2)/g
h = (0.5*2.2^2)/9.81
h = 0.25m
</span>
the Orbital Velocity is the velocity sufficient to cause a natural or artificial satellite to remain in orbit. Inertia of the moving body tends to make it move on in a straight line, while gravitational force tends to pull it down. The orbital path, elliptical or circular, representing a balance between gravity and inertia, and it follows a rue that states that the more massive the body at the centre of attraction is, the higher is the orbital velocity for a particular altitude or distance.
Answer:
15 m/s
Explanation:
Speed(m/s) = distance(m)/time(s)
distance = 216 km = 216,000 m
time = 4 hours = 14,400 s
speed = 216000/14400 = 15 m/s