0.118 m is the distance between the two protons.
Mass of proton = 1.6726 × 10⁻²⁷ kg
Weight of proton= 1.6726 × 10⁻²⁷ x 9.81 N
= 1.6408 × 10⁻²⁶ N
Charge of proton = 1.602 × 10⁻²⁹ C
The force between two protons = kq²/r² where, K is a proportionality
constant, q is a charge of proton and
r is the distance between two protons.
= 9 × 10⁹ × (1.602×10⁻¹⁹)²/r²
To calculate distance :
Weight of proton= Force between protons
⇒ 1.6408 × 10⁻²⁶ N = 9 × 10⁹ × (1.602×10⁻¹⁹)²/r²
⇒ r = 0.118m
Therefore, 0.118 m is the distance between the two protons.
Learn more about electrostatic force here:
brainly.com/question/18108470
#SPJ4
A plane mirror doesn't change the apparent size or shape of things.
-- If the meter stick is held parallel to the mirror, or is lying on the mirror,
then its image in the mirror is 1 meter long.
-- If the meter stick is held perpendicular to the mirror, or is standing on
the mirror, or pointing directly at it, then its image in the mirror has no length.
For this problem, we use the conservation of momentum as a solution. Since momentum is mass times velocity, then,
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
where
v₁ and v₂ are initial velocities of cart A and B, respectively
v₁' and v₂' are final velocities of cart A and B, respectively
m₁ and m₂ are masses of cart A and B, respectively
(7 kg)(0 m/s) + (3 kg)(0 m/s) = (7 kg)(v₁') + (3 kg)(6 m/s)
Solving for v₁',
v₁' = -2.57 m/s
<em>Therefore, the speed of cart A is at 2.57 m/s at the direction opposite of cart B.</em>
When only ________ acts on an object's mechanical energy is conserved.
<u>Answer</u><u>:</u>
Momentum
Answer:
A) vectors: veloicty, force
scalar: speed, work
B) t = 1.75 s, C) v = - 17 2 m / s
Explanation:
We answer each part separately
A) A vector magnitude has magnitude and direction instead a scalar magnitude has only magnitude
vector quantities: the speed of a car number is the magnitude and direction is where it goes
Force, the number is the magnitude and above that applies gives direction
Scalar magnitude: how quickly the number of the speedometer of the car
Temperature, work
B) I = 15 m height to the soil and get to calculate time = 0
y = y₀ + v₀ t - ½ g t²
as the ball is loose its initial velocity is zero
0 = 0 +0 - ½ g t²
t =
t = 
t = 1.75 s
C) the velocity to the reach the floor
v = vo - g t
v = 0 - g t
v = - 9.8 1.74
v = - 17 2 m / s
The negative signt iindicates that the speed goes down