Answer:
A) K / K₀ = 4 b) v / v₀ = 4
Explanation:
A) For this exercise we can use the conservation of mechanical energy
in the problem it indicates that the displacement was doubled (x = 2xo)
starting point. At the position of maximum displacement
Em₀ = Ke = ½ k (2x₀)²
final point. In the equilibrium position
= K = ½ m v²
Em₀ = Em_{f}
½ k 4 x₀² = K
(½ K x₀²) = K₀
K = 4 K₀
K / K₀ = 4
B) the speed value
½ k 4 x₀² = ½ m v²
v = 4 (k / m) x₀
if we call
v₀ = k / m x₀
v = 4 v₀
v / v₀ = 4
Answer:
A and B
Explanation:
The relation between frequency and wavelength is shown below as:

c is the speed of light having value 
Thus, the product of the wavelength and the frequency is constant and equal to 
<u>Option A is correct.</u>
Given, Frequency = 
Thus, Wavelength is:



Also, 1 m =
Å
So,
<u>Wavelength = 3.0 Å</u>
<u>Option B is correct.</u>
As stated above, the speed of electromagnetic radiation is constant. Hence, each radiation of the spectrum travels with same speed.
<u>Option C is incorrect.</u>
Answer:
Rate of change of magnetic field is
Explanation:
We have given diameter of the circular loop is 13 cm = 0.13 m
So radius of the circular loop 
Length of the circular loop 
Wire is made up of diameter of 2.6 mm
So radius 
Cross sectional area of wire 
Resistivity of wire 
Resistance of wire 
Current is given i = 11 A
So emf 
Emf induced in the coil is 


We have that there is a formula connecting these three. V=I*R where V is voltage, I is the current and R is the resistance. Substituting, we get that V=210 Volta, which is the unit of measurement for voltage. You can think of the relationship in the following way : The energy of the field is equal to the flow of the field times the resistance that it meets.