Answer:
The distance on the screen between the first-order bright fringes for each wavelength is 3.17 mm.
Explanation:
Given that,
Wavelength of red = 660 nm
Wavelength of blue = 470 nm
Separated d= 0.30 mm
Distance between screen and slits D= 5.0 m
We need to calculate the distance for red wavelength
Using formula for distance

Where, D = distance between screen and slits
d = separation of slits
Put the value into the formula


For blue wavelength,
Put the value into the formula again


We need to calculate the distance on the screen between the first-order bright fringes for each wavelength
Using formula for distance



Hence, The distance on the screen between the first-order bright fringes for each wavelength is 3.17 mm.
Answer:
2
1
2
1
3
1
Explanation:
I'm pretty sure these are right. you might want to go back and check the first and third, but the other 4 are right
2) acceleration = final velocity - initial velocity / time —> V-U/T
Acceleration is the change in velocity over the change in time so it can be represented by the equation a = Δv/Δt.
3) first one- F=10.5 N
second one- 4 m/s^2
third one- 1200N
Answer: The plasma membrane is called a selectively permeable membrane as it permits the movement of only certain molecules in and out of the cells. Not all molecules are free to diffuse. If plasma membrane ruptures or breaks down then molecules of some substances will freely move in and out of the cells.
From the formula of W = F·d , becuase we have the values for W and d we can find F
W = F·d
F= W/d
= 250/5
= 50 N
40 N of force was applied