81 is 45% of 180, all you do is divide 81 by .45 and boom there you go
We are given : m∠WYX=(2x−1)° and m∠WYZ=(4x+1)°.
∠WYX and ∠WYZ are complementary.
We know, sum of complementary angles is = 90°.
So, we need to add ∠WYX and ∠WYZ and set it equal to 90°.
m∠WYX + m∠WYZ = 90°.
Plugging values of ∠WYX and ∠WYZ in the above equation, we get
(2x−1)° + (4x+1)° = 90°.
Removing parentheses from both sides,
2x-1 + 4x+1 =90.
Combining like terms,
2x+4x= 6x and -1+1 =0
6x +0 =90.
6x=90.
Dividing both sides by 6.
6x/6 =90/6
x= 15.
Plugging value of x=15.
m∠WYX=(2x−1)° = 2*15 -1 = 30 -1 =29
m∠WYZ=(4x+1)° = 4*15 +1 = 60+1 = 61.
Therefore, ∠WYX=29° and ∠WYZ=61°.
Answer:

Step-by-step explanation:
Reference angle = 30°
Opposite side = x
Adjacent side = 2
Apply the tan trigonometric function, thus:



(tan 30 = 1/√3)

Rationalize


Find where the expression
x
−
5
x
2
−
25
x
-
5
x
2
-
25
is undefined.
x
=
−
5
,
x
=
5
x
=
-
5
,
x
=
5
Since
x
−
5
x
2
−
25
x
-
5
x
2
-
25
→
→
−
∞
-
∞
as
x
x
→
→
−
5
-
5
from the left and
x
−
5
x
2
−
25
x
-
5
x
2
-
25
→
→
∞
∞
as
x
x
→
→
−
5
-
5
from the right, then
x
=
−
5
x
=
-
5
is a vertical asymptote.
x
=
−
5
x
=
-
5
Consider the rational function
R
(
x
)
=
a
x
n
b
x
m
R
(
x
)
=
a
x
n
b
x
m
where
n
n
is the degree of the numerator and
m
m
is the degree of the denominator.
1. If
n
<
m
n
<
m
, then the x-axis,
y
=
0
y
=
0
, is the horizontal asymptote.
2. If
n
=
m
n
=
m
, then the horizontal asymptote is the line
y
=
a
b
y
=
a
b
.
3. If
n
>
m
n
>
m
, then there is no horizontal asymptote (there is an oblique asymptote).
Find
n
n
and
m
m
.
n
=
1
n
=
1
m
=
2
m
=
2
Since
n
<
m
n
<
m
, the x-axis,
y
=
0
y
=
0
, is the horizontal asymptote.
y
=
0
y
=
0
There is no oblique asymptote because the degree of the numerator is less than or equal to the degree of the denominator.
No Oblique Asymptotes
This is the set of all asymptotes.
Vertical Asymptotes:
x
=
−
5
x
=
-
5
Horizontal Asymptotes:
y
=
0
y
=
0
No Oblique Asymptotes
C C because the absolute value of -100 is 100 which is greater than zero