Asymptote at x = 3 and a horizontal asymptote at y = 1. The curves approach these asymptotes but never cross them. The method used to find the horizontal asymptote changes depending on how the degrees of the polynomials in the numerator and denominator of the function compare.
The equation described above can also be written as,
y = -x² + 100x + 4000
To get the number of notebooks that will give them the maximum profit, we derive the equation and equate to zero.
dy/dx = -2x + 100 = 0
The value of x from the equation is 50. Then, we substitute 50 to the original equation to get the profit.
y = -(50^2) + 100(50) + 4000 = 6500
Thus, the maximum profit that the company makes is $6,500/day.
Answer:
See below.
Step-by-step explanation:
Either 3 packets of 6 pens or
2 packets of 9 pens.
Answer:
D.
Step-by-step explanation:
So it tells us that g(3) = -5 and g'(x) = x^2 + 7.
So g(3) = -5 is the point (3, -5)
Using linear approximation
g(2.99) is the point (2.99, g(3) + g'(3)*(2.99-3))
now we just need to simplify that
(2.99, -5 + (16)*(-.01)) which is (2.99, -5 + -.16) which is (2.99, -5.16)
So g(2.99) = -5.16
Doing the same thing for the other g(3.01)
(3.01, g(3) + g'(3)*(3.01-3))
(3.01, -5 + 16*.01) which is (3.01, -4.84)
So g(3.01) = -4.84
So we have our linear approximation for the two.
If you wanted to, you could check your answer by finding g(x). Since you know g'(x), take the antiderivative and we will get
g(x) = 1/3x^3 + 7x + C
Since we know g(3) = -5, we can use that to solve for C
1/3(3)^3 + 7(3) + C = -5 and we find that C = -35
so that means g(x) = (x^3)/3 + 7x - 35
So just to check our linear approximations use that to find g(2.99) and g(3.01)
g(2.99) = -5.1597
g(3.01) = -4.8397
So as you can see, using the linear approximation we got our answers as
g(2.99) = -5.16
g(3.01) = -4.84
which are both really close to the actual answer. Not a bad method if you ever need to use it.