To determine which of the rectangles has a different area, the areas of the four rectangles must be calculated. The rectangle with a different area is rectangle b
The dimension of the 4 rectangles are:
a. length: 4x and width: 4
b. length: 11 and width: x
c. length: 2 and width: 8x
d. length: 16x and width: 1
The area of a rectangle is:

<u>Rectangle (a)</u>


<u>Rectangle (b)</u>


<u>Rectangle (c)</u>


<u>Rectangle (d)</u>


Rectangles (a), (c) and (d) have the same area (i.e. 16x) while rectangle (b) has 11x as its area.
Hence, the rectangle with a different area is rectangle (b).
Read more about areas of rectangles at:
brainly.com/question/14383947
The next step is to solve the recurrence, but let's back up a bit. You should have found that the ODE in terms of the power series expansion for


which indeed gives the recurrence you found,

but in order to get anywhere with this, you need at least three initial conditions. The constant term tells you that

, and substituting this into the recurrence, you find that

for all

.
Next, the linear term tells you that

, or

.
Now, if

is the first term in the sequence, then by the recurrence you have



and so on, such that

for all

.
Finally, the quadratic term gives

, or

. Then by the recurrence,




and so on, such that

for all

.
Now, the solution was proposed to be

so the general solution would be


5x (-7)y=4
y=-4/35
5x=4
x=4/5
(x, y) = (4/5, 4/35)
A. 300-200=100
You round 267 to 300, 154 to 200, and 113 to 100.