Answer:
- nitrogen
Explanation:
SANA PO MAKATULONG PO YUNG SAGOT NA BINIGAY KO
Explanation:
Mixture is physically combined while compound is chemically combined
Answer:
True is the correct answer to the above question.
Explanation:
- If x is a string then it can be assigned by the help of two ways in java:
- By the help of constructor:- When we write " x = new String("OH");", then it will create a pass a string "OH" into the constructor. It is because the String is a class in java and x is an object created by the constructor of the String class.
- With the help of assigning: The "x= OH", which assigns the value of x which is an object of String class it can also use the constructor to initialize the "OH" string on the class.
- The above question states the two scenarios which are defined above. Hence the question statement is true.
We are told that the concentration of sodium hypochlorite is 4.0% (w/v). To calculate the molarity of the sodium hypochlorite solution, let us consider a sample volume of 0.1 liter. Since we are given a w/v (Percent of weight of solution in the total volume of solution) value, it means that there are 4 <span>grams of sodium hypochlorite per 100 mL of solution (0.1 liter). Molarity is measured in moles per liter. So we'll just convert the given 4 grams to moles using the molar mass.
</span><span>
4 grams</span>sodium hypochlorite * (1 mol sodium hypochlorite/ 74.44 g sodium hypochlorite) = 0.054 moles sodium hypochlorite
So we have 0.054 moles sodium hypochlorite / 0.1 L solution
<span>
Thus the molarity is 0.53 mol/L or just 0.53 M.
</span>
Explanation:
1. Spontaneous as written at all temperatures
C. When ΔH is negative and ΔS is positive, the sign of ΔG will always be negative, and the reaction will be spontaneous at all temperatures.
2. Spontaneous in reverse at all temperatures
A. When ΔH is positive and ΔS is negative, the sign of ΔG will always be positive, and the reaction can never be spontaneous.
3. Spontaneous as written above a certain temperature
B. ΔH is positive and ΔS is positive - an endothermic reaction (positive ΔH) that also displays an increase in entropy (positive ΔS). It is the entropy term that favors the reaction. Therefore, as the temperature increases, the TΔS term in the Gibbs free energy equation will begin to predominate and ΔG will become negative.
4. Spontaneous as written below a certain temperature
D. ΔH negative and ΔS is negative - When the reaction is exothermic (negative ΔH) but undergoes a decrease in entropy (negative ΔS), it is the enthalpy term which favors the reaction. In this case, a spontaneous reaction is dependent upon the TΔS term being small relative to the ΔH term, so that ΔG is negative. The freezing of water is an example of this type of process. It is spontaneous only at a relatively low temperature.