We know that Weighted atomic mass of Element is Calculated based upon their existence of isotopes and the Relative abundance of these isotopes.
Given that the Element X is Composed of :
Isotope Relative abundance Atomic Mass
⁵⁵X 70% 55
⁵⁶X 20% 56
⁵⁷X 10% 57
Weighted Atomic Mass of Element X :
= (0.70)(55) + (0.20)(56) + (0.10)(57)
= 38.50 + 11.2 + 5.70
= 55.4
So, the Weighted Atomic Mass of Element X is 55.4
Answer:
If the mass stays constant the object's density decreases as the volume increases. ... Because the property of density is a constant for all variables, density can be used to identify the material an object is made of.
Explanation:
Ok we can use boyle’s law (stating that P is proportional to V) to make the equation (P1V1) =(P2V2).
once we’ve done this, we can plug in the numbers:
(800•500) = (200•V2)
and then we get that
V2= 2000 ml
hope this helps!! :)
Answer:
19.91 J/K
Explanation:
The entropy is a measure of the randomness of the system, and it intends to increase in nature, thus for a spontaneous reaction ΔS > 0.
The entropy variation can be found by:
ΔS = ∑n*S° products - ∑n*S° reactants
Where n is the coefficient of the substance. The value of S° (standard molar entropy) can be found at a thermodynamic table.
S°, Cl(g) = 165.20 J/mol.K
S°, O3(g) = 238.93 J/mol.K
S°, O2(g) = 205.138 J/mol.K
So:
ΔS = (1*205.138 + 1*218.9) - (1*165.20 + 1*238.93)
ΔS = 19.91 J/K
Answer:
5230J
Explanation:
Mass (m) = 250g
Initial temperature (T1) = 25°C
Final temperature (T2) = 30°C
Specific heat capacity (c) = 4.184J/g°C
Heat energy (Q) = ?
Heat energy (Q) = Mc∇T
Q = heat energy
M = mass of the substance
C = specific heat capacity
∇T = change in temperature = T2 - T1
Q = 250 × 4.184 × (30 - 25)
Q = 1046 ×5
Q = 5230J
The heat energy required to raise the temperature of 250g of water from 25°C to 30°C is 5230J