Answer:
The purpose of the experiment is to see how water of different temperature and salinity affect the density.
Explanation:
Temperature and salinity directly affect the density of the water. Water of low temperature is more dense than water of high temperature, BUT, (fresh)water with no salt is less dense than (sea)water with more salt, so temperature and salinity change density of water.
Answer:
mass ( g ) = 348 g
Explanation:
First you know : M = mole / volume (L)
in question you have the M and V and the formula of SUBSTANCE ( KF )
first you get the number of mole from equation above
so 3 = no of mole / 2
no of mole = 3 × 2 = 6 moles
and the moles equation is no of moles = mass ( g ) / molecular weight ( g/mole )
so you have already calculate the moles and you can know the MW from the Question
Mw of KF = 39 + 19 = 58
so n = mass / MW
so 6 = mass / 58
mass ( g ) = 348 g
GOOD LUCK
We want to solve Q = mcΔT for the liquid water; its change in temperature will tell us the amount of thermal energy that flowed out of the reaction. The specific heat, c, of water is 4.184 J/g °C.
Q = (72.0 g)(4.184 J/g °C)(100 °C - 25 °C) = 22593.6 J
Q ≈ 2.26 × 10⁴ J or 22.6 kJ (three significant figures).
Answer:
22.67 L of PH₃
Explanation:
The balanced equation is:

From the equation:

= 22.67 L of PH₃