Answer:
Explanation: Bromine, the dark red color disappears quickly as the atoms of bromine bond with the atoms of carbon in the double bond.
Answer:150g of gold
Explanation: There is a lot more gold and gold is significantly significantly more dense than lithium
Answer: The correct answer is option B.
Explanation: Reactivity of elements is defined as the tendency to loose or gain electrons.
These reactions are a type of single displacement reactions. A single displacement reaction is a type of reaction in which an element displaces another element in a chemical reaction. These are studied with the help of reactivity series.
The element which lies above in the reactivity series can easily displace the element which lies below in the reactivity series.
Option A: This reaction will not yield a stable product because Zinc lies below Aluminium in the reactivity series.

Option B: This reaction will yield a stable product because Sodium lies above Calcium in the reactivity series.

Option C: This reaction will not yield a stable product because Hydrogen lies below Magnesium in the reactivity series.

Option D: This reaction will not yield a stable product because Calcium lies below Barium in the reactivity series.

Option E: This reaction will not yield a stable product because barium lies below Lithium in the reactivity series.

Answer:
<em>Because CO2 dissolved in water is acidic: it forms carbonic acid. The second equilibrium below strongly favors dissolved CO2</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em>