Answer:
decreases, increases
Explanation:
In general for main-group elements atomic size decreases from left to right across a period and increases down a group
To solve this problem, we should recall that
the change in enthalpy is calculated by subtracting the total enthalpy of the reactants
from the total enthalpy of the products:
ΔH = Total H of products – Total H of reactants
You did not insert the table in this problem, therefore I
will find other sources to find for the enthalpies of each compound.
ΔHf CO2 (g) = -393.5 kJ/mol
ΔHf CO (g) = -110.5 kJ/mol
ΔHf Fe2O3 (s) = -822.1 kJ/mol
ΔHf Fe(s) = 0.0 kJ/mol
Since the given enthalpies are still in kJ/mol, we have to
multiply that with the number of moles in the formula. Therefore solving for ΔH:
ΔH = [<span>3 mol </span><span>( − </span><span>393.5 </span>kJ/mol<span>) + 1 mol (</span>0.0
kJ/mol)<span>] − [</span><span>3 mol </span><span>( − </span><span>110.5 </span>kJ/mol<span>) + </span><span>2 mol </span><span>( − </span><span>822.1 </span>kJ/mol<span>)]</span>
ΔH = <span>795.2
kJ</span>
Answer:
b) 7
Explanation:
The pH of a solution produced by the neutralization reaction between 1M of H₂SO₄ and KOH with 1M is closest to 7.
pH is a standard for measuring the acidity and alkalinity of a solution. A solution that is acidic will have a pH less than 7, a neutral solution will have pH of 7 and a basic solution will have pH greater than 7.
What is a neutralization reaction?
- It is an acid-base reaction in which hydrogen and hydroxide ions combines to form water.
- Also a salt results from the combination of the other ions.
In this reaction a base simply neutralizes an acid and the solution becomes neutral before it goes into completion.
Therefore, a neutral solution will have pH of 7 or close to it.
1) Write the balanced chemical equation
2HCl + Na2 CO3 ----------> 2NaCl + H2CO3
2) Write the molar ratios:
2 mol HCl : 1 mol Na2CO3 : 2 mol NaCl : 1 mol H2CO3
3) Convert 0.15g of sodium carbonate to number of moles
3a) Calculate the molar mass of Na2CO3
Na: 2 * 23 g/mol = 46 g/mol
C: 12 g/mol =
O: 3 * 16 g/mol = 48 g/mol
molar mass = 46g/mol + 12g/mol + 48g/mol = 106 g/mol
3b.- Calculate the number of moles of Na2CO3
# moles = grams / molar mass = 0.15 g / 106 g/mol = 0.0014 mol Na2CO3
4) Calculate the number of moles of HCl from the molar proportion:
[0.0014 mol Na2CO3] * [2 mol HCl / 1 mol Na2CO3] = 0.0028 mol HCl
5) Calculate the volume of HCl from the definition of Molarity
Molarity, M = # moles / volume in liters
=> Volume in liters = # moles / M = 0.0028 mol / 0.1 M = 0.028 liters
0.028 liters * 1000 ml / liter = 28 ml.
Answer: 28 mililiters of 0.1 M HCl.