1.905 moles of Helium gas are in the tube. Hence, option A is correct.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Calculate the moles of the gas using the gas law,
PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 4.972 atm
V= 9.583 L
n=?
R= 
T=31.8 +273= 304.8 K
Putting value in the given equation:
=n
n= 
Moles = 1.905 moles
1.905 moles of Helium gas are in the tube. Hence, option A is correct.
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
The answer to this question would be: 2 mol
To answer this question, you need to know the molecular weight of Potassium. Molecular weight determines how much the weight of 1 mol of a molecule has.
Potassium or Kalium molecular weight is 39.1 gram/mol. Then, 78.20gram of potassium should be: 78.20g/ (39.1g/mol)= 2 mol
Answer:

Explanation:
Hello.
In this case, since the acid is monoprotic and the KOH has one hydroxyl ion only, we can see that at the equivalence point the moles of both of them are the same:

Thus, since we are given 1.70 g of the acid, we compute the moles of acid that were titrated:

Which equal the moles of KOH. In such a way, since the molarity is defined as moles over liters (M=n/V), the liters are moles over molarity (V=n/M), thus, the resulting volume is:

Best regards!
Mixture/ compound
hope this helps
If the cube is 3 cm on each side, then it has a volume of 27 cm^3 (3 x 3 x 3). Density is mass divided by volume, so its density is 72.9/27 = 2.7 g/cm^3.
<span>Going by the density, the cube is made of Aluminium - density is a fairly unique quantity</span>