Answer:
Space junk is travelling so fast that a collision with an astronaut or a spacecraft could be disastrous.
Explanation:
Space junk orbits the Earth at speeds of about 28 000 km/h.
That's so fast that even an orbiting fleck of paint has enough kinetic energy to cause impact craters on the surface of a spacecraft. They are even more dangerous to an astronaut on a space walk.
Much of the space debris is larger and more dangerous than a fleck of paint.
One rough estimate of the amount of space debris is
<em> </em><u>Size</u><em> </em> <u>Number of objects</u>
< 1 cm 200 000 000
1 cm to 10 cm 700 000
> 10 cm 30 000
Satellites, etc. 18 000
The chances of collision are small, but any collision can be disastrous.
Answer:
B and D could be true
Explanation:
A volume of sodium hydroxide less than expected could occurs for two reasons:
The real concentration of sodium hydroxide was higher than expected or the amount of vinegar added was less than expected:
A. The sodium hydroxide solution had been allowed to stand exposed to the air for a long time prior to the titration. FALSE. A long expose to the air decreases concentration of the NaOH.
B. The volumetric flask used to prepare the diluted vinegar solution was rinsed with water prior to use. TRUE. You add a less amount of vinegar doing you require less amount of NaOH than expected.
C. The burette used to deliver the sodium hydroxide solution was rinsed with water prior to use. FALSE. Thus, you add a less amount of NaOH than expected. To explain the matter, you add more NaOH than expected.
D. The pipette used to deliver the vinegar solution was rinsed with water prior to use. TRUE. Again, you are adding a less amount of Vinegar than expected doing the necessary NaOH during titration less than expected
The given mass of cobalt chloride hydrate = 2.055 g
A sample of cobalt chloride hydrate was heated to drive off waters of hydration and the anhydrate was weighed.
The mass of anhydrous cobalt chloride = 1.121 g anhydrate.
The mass of water lost during heating = 2.055 g - 1.121 g = 0.934 g
Converting mass of water of hydration present in the hydrate to moles using molar mass:
Mass of water = 0.934 g
Molar mass of water = 18.0 g/mol
Moles of water = 
Answer:
A
both forms of energy referred to in the question is light and heat energy
light energy is the visible energy that travels at a known constant speed of 3.0×10^9m/s
while heat energy is the invisible energy that travels in form of radiation at variable speeds
Any buffer exists in this equilibrium
HA <=>

In a buffer, there is a large reservoir of both the undissociated acid (HA) and its conjugate base (

)
When a strong acid is added, it reacts with the large reservoir of the conjugate base (

) forming a salt and water. Since this large reservoir of the conjugate base is used, the ph does not alter drastically, but instead resist the pH change.