Answer:
Bromine mollecules are held together by van der waals forces while a water molecule constitutes both van der waals forces and hydrogen bomnding
Explanation:
This makes the water molecule recquire more heat energy to break the bond thus a higher boiling point while bromine structure requires just litttle heat energy
Answer: The answer is 185 Pm
The new pH is 7.69.
According to Hendersen Hasselbach equation;
The Henderson Hasselbalch equation is an approximate equation that shows the relationship between the pH or pOH of a solution and the pKa or pKb and the ratio of the concentrations of the dissociated chemical species. To calculate the pH of the buffer solution made by mixing salt and weak acid/base. It is used to calculate the pKa value. Prepare buffer solution of needed pH.
pH = pKa + log10 ([A–]/[HA])
Here, 100 mL of 0.10 m TRIS buffer pH 8.3
pka = 8.3
0.005 mol of TRIS.
∴ ![8.3 = 8.3 + log \frac{[0.005]}{[0.005]}](https://tex.z-dn.net/?f=8.3%20%3D%208.3%20%2B%20log%20%5Cfrac%7B%5B0.005%5D%7D%7B%5B0.005%5D%7D)
<em> </em>inverse log 0 = ![\frac{[B]}{[A]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D)
![\frac{[B]}{[A]} = 1](https://tex.z-dn.net/?f=%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D%20%3D%201)
Given; 3.0 ml of 1.0 m hcl.
pka = 8.3
0.003 mol of HCL.
![pH = 8.3 + log \frac{[0.005-0.003]}{[0.005+0.003]}\\pH = 8.3 + log \frac{[0.002]}{[0.008]}\\\\pH = 8.3 + log {0.25}\\\\pH = 8.3 + (-0.62)\\pH = 7.69](https://tex.z-dn.net/?f=pH%20%3D%208.3%20%2B%20log%20%5Cfrac%7B%5B0.005-0.003%5D%7D%7B%5B0.005%2B0.003%5D%7D%5C%5CpH%20%3D%208.3%20%2B%20log%20%5Cfrac%7B%5B0.002%5D%7D%7B%5B0.008%5D%7D%5C%5C%5C%5CpH%20%3D%208.3%20%2B%20log%20%7B0.25%7D%5C%5C%5C%5CpH%20%3D%208.3%20%2B%20%28-0.62%29%5C%5CpH%20%3D%207.69)
Therefore, the new pH is 7.69.
Learn more about pH here:
brainly.com/question/24595796
#SPJ1
The quality or state of being volcanic.
Henderson–Hasselbalch equation is given as,
pH = pKa + log [A⁻] / [HA]
-------- (1)
Solution:
Convert Ka into pKa,
pKa = -log Ka
pKa = -log 1.37 × 10⁻⁴
pKa = 3.863
Putting value of pKa and pH in eq.1,
4.29 = 3.863 + log [lactate] / [lactic acid]
Or,
log [lactate] / [lactic acid] = 4.29 - 3.863
log [lactate] / [lactic acid] = 0.427
Taking Anti log,
[lactate] / [lactic acid]
= 2.673
Result:
2.673 M
lactate salt when mixed with 1 M Lactic acid produces a buffer of pH = 4.29.