The independent variable is the type of fuel used and the dependent variable is the speed of the race car. The independent variable could be changed through the experimental process to see its relation with the dependent variable<span>. The dependent variable is the result of the independent variable changes.</span>
Answer:
A regulation game consists of 7 innings unless extended because of a tie score or unless shortened because the home team needs none or only a fraction of its 7th inning or unless 1 team is leading by 10 runs after 5 innings.
Explanation:
Answer:
C. Increasing its buoyancy
Answer:
a) E = -4 10² N / C
, b) x = 0.093 m, c) a = 10.31 m / s², θ=-71.9⁰
Explanation:
For that exercise we use Newton's second Law, in the attached we can see a free body diagram of the ball
X axis
-
= m a
Axis y
- W = 0
Initially the system is in equilibrium, so zero acceleration
Fe =
T_{y} = W
Let us search with trigonometry the components of the tendency
cos θ = T_{y} / T
sin θ =
/ T
T_{y} = cos θ
= T sin θ
We replace
q E = T sin θ
mg = T cosθ
a) the electric force is
= q E
E =
/ q
E = -0.032 / 80 10⁻⁶
E = -4 10² N / C
b) the distance to this point can be found by dividing the two equations
q E / mg = tan θ
θ = tan⁻¹ qE / mg
Let's calculate
θ = tan⁻¹ (80 10⁻⁶ 4 10² / 0.01 9.8)
θ = tan⁻¹ 0.3265
θ = 18
⁰
sin 18 = x/0.30
x =0.30 sin 18
x = 0.093 m
c) The rope is cut, two forces remain acting on the ball, on the x-axis the electric force and on the axis and the force gravitations
X axis
= m aₓ
aₓ = q E / m
aₓ = 80 10⁻⁶ 4 10² / 0.01
aₓ = 3.2 m / s²
Axis y
W = m
a_{y} = g
a_{y} = 9.8 m/s²
The total acceleration is can be found using Pythagoras' theorem
a = √ aₓ² + a_{y}²
a = √ 3.2² + 9.8²
a = 10.31 m / s²
The Angle meet him with trigonometry
tan θ = a_{y} / aₓ
θ = tan⁻¹ a_{y} / aₓ
θ = tan⁻¹ (-9.8) / 3.2
θ = -71.9⁰
Movement is two-dimensional type with acceleration in both axes