Answer:

Explanation:
given,
Angular speed of the tire = 32 rad/s
Displacement of the wheel = 3.5 rev
Δ θ = 3.5 x 2 π
= 7 π rad
now,
Time interval of the car to rotate 7π rad
using equation



Time taken to rotate 3.5 times is equal to 0.687 s.
50km / 2.5 = 20 km per hour
Answer:
The pressure in the water is 
Explanation:
Given that,
Depth = 101 m
Let P be the pressure at the bottom of water at a depth
We need to calculate the pressure in water
Using formula of pressure

Where,
= atmospheric pressure
= pressure in water
Put the value of
in to the formula

Put the value into the formula


Hence, The pressure in the water is 
To become an ocean engineer, the job would require a B<span>achelors degree in ocean engineering.
Hope this helps.</span>
Answer:
392 N
Explanation:
Draw a free body diagram of the rod. There are four forces acting on the rod:
At the wall, you have horizontal and vertical reaction forces, Rx and Ry.
At the other end of the rod (point X), you have the weight of the sign pointing down, mg.
Also at point X, you have the tension in the wire, T, pulling at an angle θ from the -x axis.
Sum of the moments at the wall:
∑τ = Iα
(T sin θ) L − (mg) L = 0
T sin θ − mg = 0
T = mg / sin θ
Given m = 20 kg and θ = 30.0°:
T = (20 kg) (9.8 m/s²) / (sin 30.0°)
T = 392 N