1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
3 years ago
11

Unless indicated otherwise, assume the speed of sound in air to be v = 344 m/s. A stationary police car emits a sound of frequen

cy 1200 Hz that bounces off a car on the highway and returns with a frequency of 1250 Hz. The police car is right next to the highway, so the moving car is traveling directly toward or away from it. (a) How fast was the moving car going? Was it moving toward or away from the police car? (b) What frequency would the police car have received if it had been traveling toward the other car at 20.0 m/s?
Physics
1 answer:
bixtya [17]3 years ago
7 0

Answer:

a) The velocity of the car is 7.02 m/s and the car is approaching to the police car as the frequency of the police car is increasing.

b) The frequency is 1404.08 Hz

Explanation:

If the police car is a stationary source, the frequency is:

f_{a} =(\frac{v+v_{c} }{v} )f_{s} (eq. 1)

fs = frequency of police car = 1200 Hz

fa = frequency of moving car as listener

v = speed of sound of air

vc = speed of moving car

If the police car is a stationary observer, the frequency is:

f_{L} =f_{a} (\frac{v}{v-v_{c} } )=(\frac{v+v_{c} }{v-v_{c} } )f_{s} (eq. 2)

Now,

fL = frequecy police car receives

fs = frequency police car as observer

a) The velocity of car is from eq. 2:

1250=1200(\frac{v+v_{c} }{v-v_{c} } )\\1250(v-v_{c} )=1200(v+v_{c} )\\v_{c} =\frac{50*344}{2450} =7.02m/s

b) Substitute eq. 1 in eq. 2:

f_{L} =(\frac{v+v_{p} }{v-v_{c} } )(\frac{v+v_{c} }{v-v_{p} } )f_{s} =(\frac{344+20}{344-7.02} )(\frac{344+7.02}{344-20} )*1200=1404.08Hz

You might be interested in
A force of 9 pounds stretches a spring 1 foot. A mass weighing 6.4 pounds is attached to the spring, and the system is then imme
mart [117]

Answer:

\frac{d^2x}{dt^2}+\frac{\beta}{m}\frac{dx}{dt}+\frac{k}{m}x=0

Explanation:

let m be the mass attached, let k be the spring constant and let \beta be the positive damping constant.

-By Newton's second law:

m\frac{d^2x}{dt^2}=-kx-\beta \frac{dx}{dt}

where x(t) is the displacement from equilibrium position. The equation can be transformed into:

\frac{d^2x}{dt^2}+\frac{\beta}{m}\frac{dx}{dt}+\frac{k}{m}x=0  shich is the equation of motion.

7 0
3 years ago
Water from a fire hose is directed horizontally against at a rate of 50.0 kg/s and a speed of 42.0 m/s.
ss7ja [257]

Answer:

Force, |F| = 2100 N

Explanation:

It is given that,

Water from a fire hose is directed horizontally against at a rate of 50.0 kg/s, \dfrac{m}{t}=50\ kg/s

Initial speed, v = 42 m/s

The momentum is reduced to zero, final speed, v = 0

The relation between the force and the momentum is given by :

F=\dfrac{p}{t}

F=\dfrac{mv}{t}

F=50\ kg/s\times 42\ m/s

|F| = 2100 N

So, the magnitude of the force exerted on the wall is 2100 N. Hence, this is the required solution.

8 0
2 years ago
Easy one here pls help thanks so much
Kisachek [45]
The answer is B. Nutrients.
8 0
2 years ago
Read 2 more answers
How does potential and kinetic energy change in to each other and back again?
PolarNik [594]
They can change because the law of conservation of energy allows it to happen, for example when you are sitting, your body is at a potential energy state, meaning you are inert, you are not moving, but when you get up and suddenly start walking or running, that energy is converted to kinetic energy, meaning that you are moving and can be changed back into potential energy if all of a sudden you stop running or walking to rest or sit down. This is just an example of how energy can are transferred multiple ways
6 0
3 years ago
A television of mass 12 kg sits on a table. The coefficient of static friction between the table and the television is 0.83. Wha
Zinaida [17]
The normal reaction between the television and the table is
N = 12 × 9.8 m/s² = 117.6 Newtons

But the static coefficient of friction is μ = 0.83

When the television is about to slide on the table, the applied force should overcome the force due to static friction;
Thus; the applied force should be at least 
F = μN
  = 0.83 × 117.6 N
  = 97.608 Newtons
Therefore; the minimum applied force will be 97.6 Newtons.
4 0
3 years ago
Read 2 more answers
Other questions:
  • According to Dutch scientist Christiaan Huygens, what was light made of? atoms particles waves electrons
    9·1 answer
  • Physical science!!!!!!helpppp
    9·1 answer
  • X-rays can be dangerous. Please select the best answer from the choices provided T F
    10·2 answers
  • Quick! how did Daniel hale Williams contribute to science?
    10·1 answer
  • How high up is a 5kg object that has 300j of energy
    12·1 answer
  • A scientist pours 0.120 L of solution A into an Erlenmeyer flask. She adds 2.345 L of solution B. How many significant figures a
    6·1 answer
  • A Perspex container has a 6 cm square base and contains
    12·1 answer
  • A ball of mass 2 kg is moving with a speed of +6 m/s directly towards
    10·1 answer
  • Dr paivio studies the ways In which the endocrine system and the nervous system are similar.
    11·1 answer
  • Please help ! Which of the following objects has the greatest momentum?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!