1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
3 years ago
11

Unless indicated otherwise, assume the speed of sound in air to be v = 344 m/s. A stationary police car emits a sound of frequen

cy 1200 Hz that bounces off a car on the highway and returns with a frequency of 1250 Hz. The police car is right next to the highway, so the moving car is traveling directly toward or away from it. (a) How fast was the moving car going? Was it moving toward or away from the police car? (b) What frequency would the police car have received if it had been traveling toward the other car at 20.0 m/s?
Physics
1 answer:
bixtya [17]3 years ago
7 0

Answer:

a) The velocity of the car is 7.02 m/s and the car is approaching to the police car as the frequency of the police car is increasing.

b) The frequency is 1404.08 Hz

Explanation:

If the police car is a stationary source, the frequency is:

f_{a} =(\frac{v+v_{c} }{v} )f_{s} (eq. 1)

fs = frequency of police car = 1200 Hz

fa = frequency of moving car as listener

v = speed of sound of air

vc = speed of moving car

If the police car is a stationary observer, the frequency is:

f_{L} =f_{a} (\frac{v}{v-v_{c} } )=(\frac{v+v_{c} }{v-v_{c} } )f_{s} (eq. 2)

Now,

fL = frequecy police car receives

fs = frequency police car as observer

a) The velocity of car is from eq. 2:

1250=1200(\frac{v+v_{c} }{v-v_{c} } )\\1250(v-v_{c} )=1200(v+v_{c} )\\v_{c} =\frac{50*344}{2450} =7.02m/s

b) Substitute eq. 1 in eq. 2:

f_{L} =(\frac{v+v_{p} }{v-v_{c} } )(\frac{v+v_{c} }{v-v_{p} } )f_{s} =(\frac{344+20}{344-7.02} )(\frac{344+7.02}{344-20} )*1200=1404.08Hz

You might be interested in
1. Two forces F~ 1 and F~ 2 are acting on a block of mass m=1.5 kg. The magnitude of force F~ 1 is 12N and it makes an angle of
VLD [36.1K]

Answer:

Normal force=7.48 N

Explanation:

N+F~1 sinθ-mg=0

=>N=1.5*9.8-12 sin37◦

=>N=14.7-7.22=7.48 N

6 0
2 years ago
In an LC circuit containing a 40-mH ideal inductor and a 1.2-mF capacitor, the maximum charge on the capacitor is 45mC during os
GalinKa [24]

Answer:

E) 6.5 A

Explanation:

Given that

L = 40 m H

C= 1.2 m F

Maximum charge on capacitor ,Q= 45 m C

The maximum current I given as

I = Q.ω

ω =angular frequency

\omega=\dfrac{1}{\sqrt{CL}}

By putting the values

\omega=\dfrac{1}{\sqrt{CL}}

\omega=\dfrac{1}{\sqrt{40\times 10^{-3}\times 1.2 \times 10^{-3}}}

ω  = 144.33 rad⁻¹

Maximum current

I = 45 x 10⁻³ x 144.33  A

I= 6.49 A

I = 6.5 A

E) 6.5 A

3 0
3 years ago
In SI units, what is the magnitude the net force acting on a 1,152 kg car that accelerates uniformly along a straight line from
geniusboy [140]

Answer:

Fnet = 14515.2 Newton

Explanation:

Net force can be defined as the vector sum of all the forces acting on a body or an object i.e the sum of all forces acting simultaneously on a body or an object.

Mathematically, net force is given by the formula;

Fnet = Fapp + Fg

Where;

  • Fnet is the net force.
  • Fapp is the applied force.
  • Fg is the force due to gravitation.

Given the following data;

Mass = 1,152 kg

Initial velocity, u = 3m/s

Final velocity, v = 17m/s

Time, t = 5 seconds

To find the magnitude of the net force;

First of all, we would determine the acceleration of the car.

Acceleration = (v-u)/t

Acceleration = (17 - 3)/5

Acceleration = 14/5

Acceleration = 2.8m/s

To find the applied force;

Fapp = mass * acceleration

Fapp = 1,152 * 2.8

Fapp = 3225.6 N

Next, we would find the force exerted on the car due to gravity.

Fg = mass * acceleration due to gravity

We know that acceleration due to gravity is equal to 9.8m/s²

Fg = 1152 * 9.8

Fg = 11289.6N

Substituting the values into the equation, we have;

Fnet = 3225.6 + 11289.6

Fnet = 14515.2 Newton

7 0
2 years ago
For two traveling waves, if the crest of one wave coincides with a trough of another, what type of interference occurs?
kogti [31]
When crest of one wave interferes with the trough of other wave, the amplitude of the resultant wave formed is less. Hence the type of interference is destructive interference.
3 0
3 years ago
The diagram represents two charges, q1 and q2 separated by a distanced "d" which change would produce the greatest increase in t
ollegr [7]

Answer:

The diagram represents two charges, q1 and q2, separated by a distance d. Which change would produce the greatest increase in the electrical force between the two charges? *

Explanation:

doubling charge q1, only

4 0
2 years ago
Other questions:
  • A firefighter with a weight of 707 N slides down a vertical pole with an acceleration of 2.79 m/s2, directed downward. (a) What
    7·1 answer
  • When two capacitors are connected in parallel across a 12.3 v rms, 1.46 khz oscillator, the oscillator supplies a total rms curr
    6·1 answer
  • Which element has the least protons in the nucleus?
    12·2 answers
  • The drag force pushes opposite your motion as you ride a bicycle. If you double your speed, what happens to the drag force?
    5·1 answer
  • An electroscope is a simple device consisting of a metal ball that is attached by a conductor to two thin leaves of metal foil p
    11·1 answer
  • Paul and Ivan are riding a tandem bike together. They’re moving at a speed of 5 meters/second. Paul and Ivan each have a mass of
    6·2 answers
  • 2-Pema runs
    14·1 answer
  • A rope with a mass density of 1 kg/m has one end tied to a vertical support. You hold the other end so that the rope is horizont
    14·1 answer
  • It takes 29.53 days for the Moon to rotate around Earth. What would happen if the Moon does not rotate or rotates faster than it
    6·1 answer
  • A 23 g bullet traveling at 230 m/s penetrates a 2.0 kg block of wood and emerges cleanly at 170 m/s. If the block is stationary
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!