Answer:
Newton's Third Law
Explanation:
Newton's third law
Newton's third law: “for every action, there is an equal and opposite reaction.” This is where you get the bounce. When you push down on the trampoline (or fall downward onto the trampoline bed), Newton's third law says that an equal and opposite reaction pushes back.
:)
Answer:
9.3m/s
Explanation:
Based on the law of conservation of momentum
Sum of momentum before collision = sum of momentum after collision
m1u1 +m2u2 = m1v1+m2v2
m1 = 8kg
u1 = 15.4m/s
m2 = 10kg
u2 = 0m/s(at rest)
v1 = 3.9m/s
Required
v2.
Substitute
8(15.4)+10(0) = 8(3.9)+10v2
123.2=31.2+10v2
123.2-31.2 = 10v2
92 = 10v2
v2 = 92/10
v2 = 9.2m/s
Hence the velocity of the 10.0 kg object after the collision is 9.2m/s
The Kepler's laws predict the planetary motion, so there are three laws for this, namely:
1. The orbit of a planet is an ellipse with the Sun (the sun is a star!) at one of the two focus.
2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
3. The square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit.
So, let's use second law. The Sun sweeps out equal areas during equal intervals of time means that if A = B, the time the planet takes to travel A1A2 is equal to the time the planet takes to travel B1B2, but given that A = 2B, then takes twice the time to travel A1A2 compared to B1B2.
The <em>gaseous state</em> of matter does that. A gas expands to take the shape and volume of whatever you put it into.