As per impulse momentum theorem we know that

now here we will have

t = 1.30 ms
m = 0.144 kg

now we need to find final speed using above formula


so final speed is given as above
Answer:
hey answer in the comment section
Answer:
<em><u>NA2SO3</u></em> is the reactant in the reaction
Explanation:
The substances which take part in a chemical reaction are called <em><u>reactants</u></em>
<em>HOPE </em><em>IT </em><em>HELPS </em>
<em>HAVE </em><em>A </em><em>NICE </em><em>DAY </em><em>:</em><em>)</em>
<em>XxYourBabyGirlxX2</em>
Answer:
ΔP.E = 6.48 x 10⁸ J
Explanation:
First we need to calculate the acceleration due to gravity on the surface of moon:
g = GM/R²
where,
g = acceleration due to gravity on the surface of moon = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
M = Mass of moon = 7.36 x 10²² kg
R = Radius of Moon = 1740 km = 1.74 x 10⁶ m
Therefore,
g = (6.67 x 10⁻¹¹ N.m²/kg²)(7.36 x 10²² kg)/(1.74 x 10⁶ m)²
g = 2.82 m/s²
now the change in gravitational potential energy of rocket is calculated by:
ΔP.E = mgΔh
where,
ΔP.E = Change in Gravitational Potential Energy = ?
m = mass of rocket = 1090 kg
Δh = altitude = 211 km = 2.11 x 10⁵ m
Therefore,
ΔP.E = (1090 kg)(2.82 m/s²)(2.11 x 10⁵ m)
<u>ΔP.E = 6.48 x 10⁸ J</u>