At the time of quark confinement, when the universe was 10-6 seconds old, there is found to be one additional proton for every billion antiprotons.
<h3>What is quark confinement?</h3>
Note that one quark is never found on its own but if particles are said to be smashed together and quarks are found, they are said to be like ends of rubber bands that expands.
Hence, At the time of quark confinement, when the universe was 10-6 seconds old, there is found to be one additional proton for every billion antiprotons.
Learn more about quark from
brainly.com/question/15103512
#SPJ1
Its a tightly-packed particles gain energy, allowing them to move more freely.
The magnitude of the force that the beam exerts on the hi.nge will be,261.12N.
To find the answer, we need to know about the tension.
<h3>How to find the magnitude of the force that the beam exerts on the hi.nge?</h3>
- Let's draw the free body diagram of the system using the given data.
- From the diagram, we have to find the magnitude of the force that the beam exerts on the hi.nge.
- For that, it is given that the horizontal component of force is equal to the 86.62N, which is same as that of the horizontal component of normal reaction that exerts by the beam on the hi.nge.

- We have to find the vertical component of normal reaction that exerts by the beam on the hi.nge. For this, we have to equate the total force in the vertical direction.

- To find Ny, we need to find the tension T.
- For this, we can equate the net horizontal force.

- Thus, the vertical component of normal reaction that exerts by the beam on the hi.nge become,

- Thus, the magnitude of the force that the beam exerts on the hi.nge will be,

Thus, we can conclude that, the magnitude of the force that the beam exerts on the hi.nge is 261.12N.
Learn more about the tension here:
brainly.com/question/28106871
#SPJ1