Answer:
The time is
Explanation:
From the question we are told that
The period of the circuit is 
Generally voltage maximization of the capacitor occurs during the voltage minimization of the inductor and vise versa
So the time between the voltage maximization of the capacitor and that of the inductor is mathematically represented as

=> 
=>
Answer:
James is correct here as the force of hand pushing upwards is always more than the force of hand pushing down
Explanation:
Here we know that one hand is pushing up at some distance midway while other hand is balancing the weight by applying a force downwards
so here we can say
Upwards force = downwards Force + weight of snow
while if we find the other force which is acting downwards
then for that force we can say that net torque must be balanced
so here we have

so here we have

so here we can say that upward force by which we push up is always more than the downwards force
The capacitance of a capacitor is the ratio of the stored charge to its potential difference, i.e.
C = Q/ΔV
C is the capacitance
Q is the stored charge
ΔV is the potential difference
Rearrange the equation:
ΔV = Q/C
We also know the capacitance of a parallel-plate capacitor is given by:
C = κε₀A/d
C is the capacitance
κ is the capacitor's dielectric constant
ε₀ is the electric constant
A is the area of the plates
d is the plate separation
If we substitute C:
ΔV = Qd/(κε₀A)
We assume the stored charge and the area of the plates don't change. Then if we double the plate spacing, i.e. we double the value of d, then the potential difference ΔV is also doubled.
Running on sand requires 1.6 times more energy spent than running on hard surface, so the force applied by our foot on sand is less.
I’d say b is the better option because d is starving yourself which creates unhealthy habits, c would cause yo yo dieting or binging because you treat food as a reward which is a toxic mindset, and a same explanation. I wish there was an answer to just track what you eat, have daily exercise and enjoy in moderation, though.