<u>Answer: </u>The amount of heat released is 84 calories.
<u>Explanation:
</u>
The equation used to calculate the amount of heat released or absorbed, we use the equation:

where,
Q = heat gained or released = ? Cal
m = mass of the substance = 10g
c = specific heat of aluminium = 0.21 Cal/g ° C
Putting values in above equation, we get:
Q = -84 Calories
Hence, the amount of heat released is 84 calories.
Answer:
carbon
Explanation:
cabonis not a conductor of heat
The easiest way is to use the Law of Gay-Lussac. This law states that there is a direct relation between the temperature in Kelvin of a gas and the pressure.
Then, namig p the pressure and T the temperature in Kelvin and using subscripts for every state:
p/T is constant ==> p_1 / T_1 = p_2/T_2
From which you obtain:
p_2 = [p_1 / T_1] * T_2
T_1 = 33.0 + 273.15 = 306.15 K
T _2 = 21.4 + 273.15 = 294.55 K
p_1 = 1014 kPa
p_2 = 1014 kPa * 294.55 K / 306.15 K = 975.6 kPa
Write the chemical equation for reaction
that is
2SO2+O2 --->2SO2
find the moles of SO2 used = moles=mass/molar mass of so2
= 32g/80g/mol=0.4 moles
by use of reacting ratio between SO2 and SO3 which is 2:2 therefore the moles of so3 is also = 0.4 moles
STP 1 mole = 22.4L.
what about 0.4moles
= 0.4 /1 x22.4=8.96 liters