Answer:
4 - 1 - 3 - 2 - 6 - 5
Explanation:
During an engineering process, first, we need to identify the problem, or the need because the process only will occur because of some need. Then, it's necessary to know as much as possible about the problem and the things that already exist or already were tested to solve it. Knowing the background will make the work easy.
After that, it's necessary to plan the things we'll do, knowing the costs, the time needed for activities, how many people will be necessary for each step, etc. It's really important to make a plan. Then, do the work, following the plan. Thus, the process must be tested. During the test of the results, some problems must be found, so it's time to evaluate and redesign the process, to solve these problems found.
Mass percent= grams solute/ grams of solution x 100
Mass Percent= (50/ 150)x100= 33.3%
0.83 m/s seems the correct answer, hope it helps
Answer:
A population or community research line can be carried out, wherever at a certain point in time, regardless of whether it is a cross-sectional study.
In addition, the people who would be the population to be studied or the object of study might or might not know the cause of the study (blind) while the researcher could be experimentally participatory.
Explanation:
They are prevalence studies, in which the presence of a health condition or state is determined in a well-defined population and in a determined time frame: one day, one week, a particular moment in life, even if it does not temporarily coincide in all the subjects (for example, the blood pressure figures at the time of entering the school or at the beginning of the holidays, the prevalence of diabetes in hospitalized patients on a given day, etc.).
They are like "photographs" of a state of affairs at a given moment. The simultaneous determination of what is understood by exposure and event does not allow defining causality.
In the combustion process using excess oxygen, each mole of methane results to 1 mole of co2 while ethane produces 2 moles of Co2. Under same conditions, these can be translated to volume. Hence the total volume absorbed is 10 cm3 + 20 cm3 = 30 cm3.