Answer:
<em>20 Liters</em>
Explanation:
If the pressure is supposed to be constant, one of Charles - Gay Lussac's laws can be used to solve the exercise. His statement says that "the volume of the gas is directly proportional to its temperature at constant pressure", mathematically it would be:

Considering T₁ = 50 ° C; V₁ = 10.0 L; and T₂ = 100 ° C, we can calculate the volume V₂ Clearing it from the equation and replacing the values to perform the calculation:
V2= (V1 x T2) / T1 = (10.0 L x 100°C) / 50 °C = 20 L
Therefore, <em>the gas at 100 ° C will occupy a volume of 20.0 L</em>.
Molar concentration = (numbet of mol Solute)/ ( volume Solution)
1) Finding
the number of the mol solute


Answer:
E° = 1.24 V
Explanation:
Let's consider the following galvanic cell: Fe(s) | Fe²⁺(aq) || Ag⁺(aq) | Ag(s)
According to this notation, Fe is in the anode (where oxidation occurs) and Ag is in the cathode (where reduction occurs). The corresponding half-reactions are:
Anode: Fe(s) ⇒ Fe²⁺(aq) + 2 e⁻
Cathode: Ag⁺(aq) + 1 e⁻ ⇒ Ag(s)
The standard cell potential (E°) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E° = E°red, cat - E°red, an
E° = 0.80 V - (-0.44 V) = 1.24 V
Answer:
liquid and solid
Explanation:
Research scientists of scotland discovered a new state of the matter which consists of both liquid and solid. Scientifically there are three states of matter i.e Solid, Liquid and Gas, but now there are chances of one more state of matter which which consists of more than one state of the existing three states of the matter which have both liquid and solid state.
This discovery took place with the help of artificial intelligence of today's world which is transforming the world day by day.
The State is considered to be true as it is thermodynamically stable state of the matter.