1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LekaFEV [45]
3 years ago
6

A(n) 69.8 kg astronaut becomes separated from the shuttle, while on a space walk. She finds herself 60.4 m away from the shuttle

and moving with zero speed relative to the shuttle. She has a(n) 0.886 kg camera in her hand and decides to get back to the shuttle by throwing the camera at a speed of 12 m/s in the direction away from the shuttle. How long will it take for her to reach the shuttle? Answer in minutes. Answer in units of min.
Physics
1 answer:
alukav5142 [94]3 years ago
6 0

Answer:

The time taken is 6.7  min

Explanation:

Using the linear momentum conservation theorem, we have:

m_1*v_{o1}+m_2*v_{o2}=m_1*v_{f1}+m_2*v_{f2}

when she was 60.4m from the shuttle, she has zero speed, so the initial velocity is zero.

m_1*0+m_2*0=m_1*v_{f1}+m_2*v_{f2}\\m_1*_{f1}=-m_2*v_{f2}\\v_{f1}=-\frac{m_2*v_{f2}}{m_1}\\\\v_{f1}=-\frac{0.886kg*12m/s}{69.8kg}\\\\V_{f1}=-0.15m/s

That is 0.15m/s in the opposite direction of the camera.

the time taken to get to the shuttle is given by:

t=\frac{d}{v_{f1}}\\\\t=\frac{60.4m}{0.15m/s}\\\\t=403s\\t_{min}=403s*\frac{1min}{60s}=6.7min

You might be interested in
What are 3 ways acceleration can change?
Karolina [17]

Velocity, direction, or both at the same time.

3 0
3 years ago
How do you find the normal force here? I forgot
kakasveta [241]
Normal force is mass x gravity, so mass x 9.81
6 0
3 years ago
Read 2 more answers
Which statement best describes the movement of electrical current when a capacitor is used in a circuit?
Masteriza [31]

Answer: B.

Capacitors prevent current from moving through a circuit 

Explanation:

If a direct voltage is applied on the capacitor, no conduction current flows through the capacitor if its insulating medium is perfect insulator. This is due to the fact that there are no free charge carriers in such medium. Basically the real insulator contains very few charge carriers and therefore a very small leakage current passes in the capacitor depending on the conductivity of the insulator.

If an alternating voltage is applied on the capacitor, a displacement current passes through the capacitor irrespective of the insulating medium. This current is termed also the capacitive current. It flows because of changing electric displacement with time.

4 0
3 years ago
A small but measurable current of 3.8 × 10-10 A exists in a copper wire whose diameter is 2.5 mm. The number of charge carriers
Karolina [17]

Answer:

a) 4.9*10^-6

b) 5.71*10^-15

Explanation:

Given

current, I = 3.8*10^-10A

Diameter, D = 2.5mm

n = 8.49*10^28

The equation for current density and speed drift is

J = I/A = (ne) Vd

A = πD²/4

A = π*0.0025²/4

A = π*6.25*10^-6/4

A = 4.9*10^-6

Now,

J = I/A

J = 3.8*10^-10/4.9*10^-6

J = 7.76*10^-5

Electron drift speed is

J = (ne) Vd

Vd = J/(ne)

Vd = 7.76*10^-5/(8.49*10^28)*(1.60*10^-19)

Vd = 7.76*10^-5/1.3584*10^10

Vd = 5.71*10^-15

Therefore, the current density and speed drift are 4.9*10^-6

And 5.71*10^-15 respectively

3 0
3 years ago
Two facing surfaces of two large parallel conducting plates separated by 8.5 cm have uniform surface charge densities such that
elena-s [515]

Answer:

positive plate

E = 5.764 KV / m

W = 490eV or 7.85 * 10^-17 J

E_p = 4.74 *10^(-12) eV

E_k = 490 eV

Explanation:

part a

The potential difference between two plates = 490 V

Distance between two plates = 8.5 cm

Answer: The positive plate is at higher potential because of convention.

part b

Electric Field between the plates

E = V / d

E = 490 / 0.085 = 5.764 KV / m

Answer: Electric Field between the plates E = 5.764 KV / m

part c

Work done by electric field

W = V*q

W = 490 * 1.602*10^-19

W = 7.85 * 10^-17 J

or W = 490 eV

Answer: Work done by electric field W = 490eV or 7.85 * 10^-17 J

part d

Potential Energy of an electron gained:

E_p = m_e * g * d / (1.602*10^-19)

E_p =  9.109*10^-31* 9.81 * 0.085 / (1.602*10^-19)

E_p = 4.74 *10^(-12) eV

Very very small E_p approximately 0

Answer: Potential Energy of an electron gained E_p = 4.74 *10^(-12) eV or 0.

part e

Kinetic Energy of an electron gained:

W - E_p = E_k

E_k = 490eV - 4.74*10^(-12)eV

E_k = 490 eV

Answer: Kinetic Energy of an electron gained E_k = 490 eV

7 0
3 years ago
Other questions:
  • What type of wave is the highest on the electromagnetic spectrum?
    14·1 answer
  • The coordinates of a bird flying in the xy plane are given by x(t)=αt and y(t)=3.0m−βt2, where α=2.4m/s and β=1.2m/s2. Calculate
    5·2 answers
  • Which of the following is true about magnetic poles?
    13·2 answers
  • In the stream, water waves bunched up as the water flowed by. As we
    10·1 answer
  • What was the measurement of the wavelength and amplitude respectively?
    7·1 answer
  • The intensity of sunlight reaching the earth is 1360 w/m2. Assuming all the sunligh is absorbed, what is the radiation pressure
    14·1 answer
  • What is the relationship between electricity and magnetism? Choose the best answer.
    11·1 answer
  • The EMF does not depend on which of the following?
    14·1 answer
  • Velocity is an extensive property of a system. TRUE OR FALSE​
    9·2 answers
  • To lower the risk of a collision, you should keep at least __________ of space to one side of your vehicle at all times.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!