Considering the Coulomb's Law, the magnitude of the Coulomb force is 3.1865 N.
<h3>Coulomb's Law</h3>
Charged bodies experience a force of attraction or repulsion on approach.
From Coulomb's Law it is possible to predict what the electrostatic force of attraction or repulsion between two particles will be according to their electric charge and the distance between them.
From Coulomb's Law, the electric force with which two point charges at rest attract or repel each other is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them:

where:
- F is the electrical force of attraction or repulsion. It is measured in Newtons (N).
- Q and q are the values of the two point charges. They are measured in Coulombs (C).
- d is the value of the distance that separates them. It is measured in meters (m).
- K is a constant of proportionality called the Coulomb's law constant. It depends on the medium in which the charges are located. Specifically for vacuum k is approximately 9×10⁹
.
The force is attractive if the charges are of opposite sign and repulsive if they are of the same sign.
<h3>This case</h3>
In this case, you know that:
- The two uncharged sphere are separated by the distance of d= 3.50 m
- The number of electrons are 1.30×10¹².
- Electrons is elementary charge and charges on both the sphere is same. The value of electron is 1.602×10⁻¹⁹ C. This is, Q=q=1.30×10¹²×1.602×10⁻¹⁹ C= 2.0826×10⁻⁷ C
Replacing in Coulomb's Law:

Solving:
<u><em>F= 3.1865 N</em></u>
Finally, the magnitude of the Coulomb force is 3.1865 N.
Learn more about Coulomb's Law:
brainly.com/question/26892767
#SPJ1
At stp conditions (

), the speed of sound is

The sound wave moves by uniform motion, so we can use the basic relationship between space, time and velocity:

where S is the distance covered by the sound wave in a time t. In our problem, t=3.00 s, therefore the distance covered by the sound wave is
In a displacement/time graph, the slope of the line is equal to the velocity
Answer:
Their efforts would be expressed in units of Joules per second
Explanation:
The unit of their efforts can be derived from the formula of power which is given by the product of mass, acceleration and distance (the product is energy with unit joules) divided by time taken to complete the task (unit is seconds)
Therefore, the unit of their efforts would be joules per second
B- Same force
It’s b because force always acts in equal but opposite pairs.