Answer:
They are both correct.
Explanation:
The density of an object is defined as the ratio of its mass to its volume. This implies that the density of the object is both proportional to the mass and also to the volume of the object. John only mentioned mass which is correct. Linda mentioned the second variable on which density depends which is the volume of the object.
Hence considering the both statements objectively, one can say that they are both correct.
s alluded to in the other answers, salt refers to any ionic compound that doesn't have “oxides” in it. Table salt is sodium chloride. Going down the periodic table, the first column contains lithium, sodium, potassium, rubidium, cesium, and francium. This group (alkali metals) of atoms (and their corresponding positive ions) gets larger in the order shown above. Therefore, their ionic bonds with chloride (or any nonmetal) gets smaller. The trend of their corresponding compounds is a decreasing hardness, decreasing melting point, decreasing boiling point, and decreasing thermal stability. These are the major periodic trends of these corresponding compounds. Other metal ions generally have higher positive charges on them. This makes the ionic bonds considerably larger and you can probably surmise most of their corresponding properties listed above. However, the details of their lattice structures may cause the overall trend to vary.
Hey user!
your answer is here..
correct option is A. steel
we know that sounds travel faster in solid as compared to gas and liquids. in gas the molecules are very loosely packed and there is lot of space between so it takes more time to pass sound from each other. and in liquid, the molecules are closer as compared to gas hence it will be little faster and in solid, the molecules are very tightly packed so it will be the fastest. and among these options, steel is the only solid so the speed of sound in steel will be the fastest.
and note that the closer the molecules are to each other ( tightly packed ) makes the bond also tighter and less time to pass sound.
cheers!!
Answer:
3 mA.
Explanation:
The following data were obtained from the question:
Resistor (R) = 500 Ω
Potential difference (V) = 1.5 V
Current (I) =.?
Using the ohm's law equation, we can obtain the current as follow:
V = IR
1.5 = I x 500
Divide both side by 500
I = 1.5 / 500
I = 3×10¯³ A.
Therefore, the current in the circuit is 3×10¯³ A.
Finally, we shall convert 3×10¯³ A to milliampere (mA).
This can be obtained as follow:
Recall:
1 A = 1000 mA
Therefore,
3×10¯³ A = 3×10¯³ × 1000 = 3 mA
Therefore, 3×10¯³ A is equivalent to 3 mA.
Thus, the current in mA flowing through the circuit is 3 mA.