Answer:
The initial acceleration of the 59g particle is
Explanation:
Newton's second laws relates acceleration (a), net force(F) and mass (m) in the next way:
(1)
We already know the mass of the particle so we should find the electric force on it to use on (1), the magnitude of the electric force between two charged objects by Columb's law is:

with q1 and q2 the charge of the particles, r the distance between them and k the constant
. So:

Using that value on (1) and solving for a

The total resistance is 420 ohm.
A circuit with resistive elements of 220, 100, 57, and 43 produce what total resistance
R= 220+ 100+ 57+ 43
= 420 Ω
What is resistance and its types?
Resistance is a measure of the opposition to current flow in an electrical circuit also known as ohmic resistance or electrical resistance. Ohms are measured as resistance, symbolized by the Greek letter omega (Ω). The ratio of the applied voltage to the current through the material is then known as resistance.
What causes resistance?
An electric current flows when electrons move through a conductor, such as a metal wire. The moving electrons can collide with the ions in the metal. This makes it more difficult for the current to flow, and causes resistance.
Learn more about resistance:
brainly.com/question/17563681
#SPJ4
A steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.the speed of transverse waves on the wire would be 372.77 m/s
<h3>What is a sound wave?</h3>
It is a particular variety of mechanical waves made up of the disruption brought on by the movements of the energy. In an elastic medium like the air, a sound wave travels through compression and rarefaction.
For calculating the wave velocity of the sound waves generated from the piano can be calculated by the formula
V= √F/μ
where v is the wave velocity of the wave travel on the string
F is the tension in the string of piano
μ is the mass per unit length of the string
As given in question a steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.
The μ is the mass per unit length of the string would be
μ = 4.80/(1.150×1000)
μ = 0.0041739 kg/m
By substituting the respective values of the tension on the string and the density(mass per unit length) in the above formula of the wave velocity
V= √F/μ
V=√(580/0.0041739)
V = 372.77 m/s
Thus, the speed of transverse waves on the wire comes out to be 372.77 m/s
Learn more about sound waves from here
brainly.com/question/11797560
#SPJ1
Answer:
Here the circuit in which a 4Ω resistor resistor is connected in series and two 8Ω resistor resistors are connected in parallel. Also, ammeter and voltmeter connected in series and parallel circuit respectively.
Now,
The maximum power of each resistance is 16 W
The 4Ω resistor is linked in series with the circuit.
so, P o w e r = I
two
R, here i is the current through the resistor resistor R
1 6 = I
two
∗ 4 Ω
i = 2A
Now 2A passes through parallel resistors of 8Ω resistance.
we know that, in parallel, the potential difference must be constant,
the current is divided into two parts, because the same resistance current in each resistance will be half. then the current through each resistor in parallel is
2 A
two
.
= 1 A
So finally the current through the 4Ω resistor = 2 A
current through each 8Ω resistor = 1 A
Explanation:
I hope this answer has helped you
Answer:
1.6 m
Explanation:
Given that the launch velocity of a toy car launcher is determined to be 5 m/s. If the car is to be launched from a height of 0.5 m.
The time for landing should be calculated by using the second equation of motion formula
h = Ut + 1/2gt^2
Let U = 0
0.5 = 1/2 × 9.8 × t^2
0.5 = 4.9t^2
t^2 = 0.5 / 4.9
t^2 = 0.102
t = 0.32 s
The target should be placed so that the toy car lands on it at:
Distance = 5 × 0.32
distance = 1.597 m
Distance = 1.6 m
Therefore, the target should be placed so that the toy car lands on it 1.6 metres away.