Answer:
D
Step-by-step explanation:
The equation of a circle centred at the origin is
x² + y² = r² ( where r is the radius )
Here r = 15, thus
x² + y² = 15² , that is
x² + y² = 225 → D
There's not much math work here, they just want you to eyeball the graph and give the closest grid point to where the two lines meet.
Let's translate the question.
Solution to the system
That's the x and y values where the two lines cross. That's because the meeting point is the value of x and y that satisfies both equations.
Approximation ... to the nearest integer values
Where two integer grid lines cross is called a lattice point. It's a point with integer coordinates. Our solution, the meet of these two lines, doesn't fall exactly on a lattice point. The nearest integer values means the closest lattice point to our intersection of lines.
Eyeballing the graph, I'd say (x,y)=(2,3) is the closest point.
Answer: (2,3) second choice


if we were to place <5, 12> in standard position, so it'd be originating from 0,0, then the rise is 12 and the run is 5.
so any other vector that has a negative reciprocal slope to it, will then be perpendicular or "orthogonal" to it.
so... for example a parallel to <-12, 5> is say hmmm < -144, 60>, if you simplify that fraction, you'd end up with <-12, 5>, since all we did was multiply both coordinates by 12.
or using a unit vector for those above, then
Answer:
1.6x10^-18 gram
Step-by-step explanation:
(5.3 x 10⁻²³ gram/molecule) x (20,000 molecule)
= (5.3 x 10⁻²³ x 2 x 10⁴) gram
= (10.6 x 10⁻²³⁺⁴) gram
= (1.06 x 10⁻²³⁺⁵) gram
= 1.06 x 10⁻¹⁸ gram
We need to find the mass of 20,000 molecules of oxygen. It can be calculated using unitary method. Here, we can multiply 20,000 molecules by the mass of one oxygen molecule.