Answer:
Explanation:
In the x direction the force will be
½(-w₀)L/2 = -¼w₀L
acting ⅔(L/2) = L/3 below the x axis.
In the y direction the force will be
½(-w₀)L + ½w₀L/2 = -¼w₀L
the magnitude of the resultant will be
F = w₀L √((-¼)² + (-¼)²) = w₀L√⅛
in the direction
θ = arctan(-¼w₀L / -¼w₀L) = 225°
to find the distance, we balance moments
(w₀L√⅛)[d] = ½(w₀)L[⅔L] + ¼w₀L[⅔L/2] - ¼w₀L[L - ⅓L/2]
(√⅛)[d] = ½ [⅔L] + ¼ [⅔L/2] - ¼ [L - ⅓L/2]
(√⅛)[d] = ½[⅔L] + ¼[⅔L/2] - ¼[L - ⅓L/2]
(√⅛)[d] = ⅓L + ⅟₁₂L - ¼L + ⅟₂₄L
(√⅛)[d] = 5L/24
d = 5L/24 / (√⅛)
d = 5√⅛L/3
Answer:
<h3>The answer is option B</h3>
Explanation:
The frequency of a wave can be found by using the formula

where
c is the velocity
From the question
wavelength = 0.39 m
c = 86 m/s
We have

We have the final answer as
<h3>200 Hz</h3>
Hope this helps you
Answer
The same number of particles in a gas spread further apart than in the liquid or solid states.
Explanation:
The same number of particles in a gas spread further apart than in the liquid or solid states. The same mass takes up a bigger volume. This means the gas is less dense. Density also depends on the material.
Answer:
The answer is C
Explanation:
The radius is HALF of the diameter...so you would have to find a dividing "2". :)