If the boat is floating, then it's just sitting there, and not accelerating
up or down. That means the vertical forces on it must be balanced.
So if its weight (acting downward) is 100 newtons, then the buoyant
force on it (acting upward) must also be 100 newtons.
B. Decreasing surface area of a solid reactant. The more surface area showing, the quicker the reaction rate.
The mass contributes with the time of thermal energy transfer with respect to the material type but most importantly the material type will determine rate at which the material absorbs the transfer of heat or thermal energy by either three types, conduction, convection and radiation.
Answer:
Mass released = 8.6 g
Given data:
Initial number of moles nitrogen= 0.950 mol
Initial volume = 25.5 L
Final mass of nitrogen released = ?
Final volume = 17.3 L
Formula:
V₁/n₁ = V₂/n₂
25.5 L / 0.950 mol = 17.3 L/n₂
n₂ = 17.3 L× 0.950 mol/25.5 L
n₂ = 16.435 L.mol /25.5 L
n₂ = 0.644 mol
Initial mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.950 mol × 28 g/mol
Mass = 26.6 g
Final mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.644 mol × 28 g/mol
Mass = 18.0 g
Mass released = initial mass - final mass
Mass released = 26.6 g - 18.0 g
Mass released = 8.6 g
Read more on Brainly.com - brainly.com/question/15623698#readmore
Planck's equation states that
E = hf
where
E = the energy,
h = Planck's constant
f = the frequency
Because
c = fλ
where
c = velocity of light,
λ = wavelength
therefore
E = h(c/λ)
Photon #1:
The wavelength is λ₁ = 60 nm.
The energy is
E₁ = (hc)/λ₁
Photon #2:
The energy is twice that of photon #1, therefore its energy is
E₂ = 2E₁ = (hc)/λ₂.
Therefore

Answer: 30 nm