Answer: 288.8 m
Explanation:
We have the following data:
is the time it takes to the child to reach the bottom of the slope
is the initial velocity (the child started from rest)
is the angle of the slope
is the length of the slope
Now, the Force exerted on the sled along the ramp is:
(1)
Where
is the mass of the sled and
its acceleration
In addition, if we draw a free body diagram of this sled, the force along the ramp will be:
(2)
Where
is the acceleration due gravity
Then:
(3)
Finding
:
(4)
(5)
(6)
Now, we will use the following kinematic equations to find
:
(7)
(8)
Where
is the final velocity
Finding
from (7):
(9)
(10)
Substituting (10) in (8):
(11)
Finding
:

The gravitational force experienced by Earth due to the Moon is <u>equal to </u>the gravitational force experienced by the Moon due to Earth.
<u>Explanation</u>:
The force that attracts any two objects/bodies with mass towards each other is defined as gravitational force. Generally the gravitational force is attractive, as it always pulls the masses together and never pushes them apart.
The gravitational force can be calculated effectively using the following formula: F=GMmr^2
where “G” is the gravitational constant.
Though gravity has the ability to pull the masses together, it is the weakest force in the nature.
The mass of the Earth and moon varies, but still the gravitational force felt by the Earth and Moon are alike.
From Boyle's law, the volume of a fixed mass of a gas is inversely proportional to its pressure at constant absolute temperature.
Therefore; P1V1 =P2V2; where PV is a constant
hence; 12 × 6 = 3× p2
p2 = 72/3
= 24 atm
Therefore; the new pressure will be 24 atm
I think it was by boat and coming from over seas