The letter “j” is never found on the periodic table. As for numbers, there’s an infinite amount
Answer:
an air mass is a volume of air defined by its temperature and water vapor content. Air masses cover many hundreds or thousands of miles, and adapt to the characteristics of the surface below them. They are classified according to latitude and their continental or maritime source regions. Colder air masses are termed polar or arctic, while warmer air masses are deemed tropical. Continental and superior air masses are dry while maritime and monsoon air masses are moist. Weather fronts separate air masses with different density (temperature and/or moisture) characteristics. Once an air mass moves away from its source region, underlying vegetation and water bodies can quickly modify its character.When winds move air masses, they carry their weather conditions (heat or cold, dry or moist) from the source region to a new region. When the air mass reaches a new region, it might clash with another air mass that has a different temperature and humidity. This can create a severe storm.
Air masses can affect the weather because of different air masses that are different in temperature, density, and moisture. When two different air masses meet a front forms. This is one way air masses effect our weather.
Answer:
ac = 2.86 m / s²
Explanation:
Image can detail the system to determine the force in the FA to understand the system into the applicated force
m = 100 kg , L = 3 m
∑ F = 0 ⇒ Ay - 100 kg + P * cos (45) = 0
Ay = 768.86 N
∑ Mₐ = α * I ₐ
I ₐ = m * L² / 3 ⇒ I ₐ = 100 kg * 4² m / 3
Replacing
P * sin (45) * 3 = α * 100 kg * 4² m / 3
α = 1.193 rad / s²
ac = α *2 ⇒ ac = 1.193 rad / s² * 2
ac = 2.86 m / s²
If you press on your arm force is applied work done is if it moves.
One answer could be if I was to press my hand on a table.
Have a great day!
Answer:
As the temperature increases, the kinetic energy of the particles increases.
Explanation:
When the temperature of the substance increases, the velocity increases which makes the movement of the particles to speed up. This causes the particles to increase. Therefore, as the temperature increases, the kinetic energy of the particles also increases.