Answer:
1.2 rad/s
Explanation:
m1 = 15 g, m2 = 9 g, ω1 = 0.75 rad/s
Let the new angular speed is ω2 and the radius of the table be r.
The angular momentum is conserved when no external torque is applied.
I1 ω1 = I2 ω2
(m1 + m2)x r^2 x 0.75 = m1 x r^2 x ω2
(15 + 9) x 0.75 = 15 x ω2
ω2 = 1.2 rad/s
<span>D. Convection occurs when heated particles of a material flow toward areas having less thermal energy. This movement of particles can only occur in gases and liquids, not solids.</span>
Tension in the rope due to applied force will be given as

angle of applied force with horizontal is 37 degree
displacement along the floor = 6.1 m
so here we can use the formula of work done

now we can plug in all values above


So here work done to pull is given by 691.8 J
Answer:
a) frequency = 0.1724 Hz
b) Period = 5.8 sec
c) speed = 7.04 m/s
d) acceleration = 7.62 m/s²
Explanation:
Given that;
radius = 6.5m
time period = 5.8 sec every circle
a) the frequency
frequency is the number of rotation in unit time
frequency = 1 / time period = 1/5.8
frequency = 0.1724 Hz
b) the period
period is time taken in one rotation
period = total time / rotation = 5.8 / 1
Period = 5.8 sec
c) the speed
speed = distance/time = circumference/time period = 2πr / t = (2π×6.5) / 5.8
speed = 7.04 m/s
d) acceleration
To find the acceleration we take the linear velocity squared divided by the radius of the circle.
so
acceleration = v² / r = (7.04)² / 6.5 = 49.5616 / 6.5
acceleration = 7.62 m/s²
Answer:
Rotational kinetic energy = 0.099 J
Translational kinetic energy = 200 J
The moment of inertia of a solid sphere is
.
Explanation:
Rotational kinetic energy is given by

where <em>I</em> is the moment of inertia and <em>ω</em> is the angular speed.
For a solid sphere,

where <em>m</em> is its mass and <em>r</em> is its radius.
From the question,
<em>ω</em> = 49 rad/s
<em>m</em> = 0.15 kg
<em>r</em> = 3.7 cm = 0.037 m


Translational kinetic energy is given by

where <em>v</em> is the linear speed.
