Answer:
• 36.4 kg of coal.
• 80 pounds of coal.
Explanation:
Using proportionality constant,
Mass of coal = 1,000,000/27,500,000 btus/metric ton
= 0.0364 metric tons of coal
Mass of coal = 1,000,000/25,000,000 btus/ton
= 0.04 tons of coal.
Converting metric tons to kilogram,
1 metric ton = 1000kg,
0.0364 metric ton;
= 36.4 kg of coal.
Converting tons to pounds,
1 ton = 2000 pounds,
0.04 metric ton;
= 80 pounds of coal.
Answer:
low melting point
Ionic compounds have high melting and boiling points. This is because a considerable amount of energy is required to break the strong inter-ionic attraction
Explanation:
Answer:
The question is incomplete, below is the complete question "A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arrow = (2.00 m)i hat − (3.00 m)j + (2.00 m)k, the force is F with arrow = Fxi hat + (7.00 N)j − (5.00 N)k and the corresponding torque about the origin is vector tau = (4 N · m)i hat + (10 N · m)j + (11N · m)k.
Determine Fx."

Explanation:
We asked to determine the "x" component of the applied force. To do this, we need to write out the expression for the torque in the in vector representation.
torque=cross product of force and position . mathematically this can be express as

Where
and the position vector

using the determinant method to expand the cross product in order to determine the torque we have
![\left[\begin{array}{ccc}i&j&k\\2&-3&2\\ F_{x} &7&-5\end{array}\right]\\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2%26-3%262%5C%5C%20F_%7Bx%7D%20%267%26-5%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C)
by expanding we arrive at

since we have determine the vector value of the toque, we now compare with the torque value given in the question

if we directly compare the j coordinate we have

The total resistance of a series circuit is equal to the sum of individual resistances. Voltage applied to a series circuit is equal to the sum of the individual voltage drops. The voltage drop across a resistor in a series circuit is directly proportional to the size of the resistor.
If you know the total current and the voltage across the whole circuit, you can find the total resistance using Ohm's Law: R = V / I. For example, a parallel circuit has a voltage of 9 volts and total current of 3 amps. The total resistance RT = 9 volts / 3 amps = 3 Ω
Current: The total circuit current is equal to the sum of the individual branch currents. Resistance: Individual resistances diminish to equal a smaller total resistance rather than add to make the total.