Answer:
208.33 W
141.26626 seconds
Explanation:
E = Energy = 
t = Time taken = 8 h
m = Mass = 2000 kg
g = Acceleration due to gravity = 9.81 m/s²
h = Height of platform = 1.5 m
Power is obtained when we divide energy by time

The average useful power output of the person is 208.33 W
The energy in the next part would be the potential energy
The time taken would be

The time taken to lift the load is 141.26626 seconds
Answer:
Wien's law:
λ_peak = b/T
Wien's constant: b = 2.8977685(51)Ă—10â’3 m•K
T = (5/9)[96 – 32) + 273 = 35.55 + 273 = 308.55 deg. K
λ_peak = 2.8977685(51)Ă—10â’3 /308.55 = 9.39x10^-6 = 9.39 um
Answer:
4.5 metres
Explanation:
Using Hooke's Law (
)
We need to find the spring constant of the bungee cord with the given extension and force, we can do this by substituting in known values.

Now we have found the spring constant of the bungee cord, we can substitute it in for the a different force. As the cord is the same we can use the same spring constant.

Answer:
Formally stated, Newton's third law is: For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object.
Explanation:
this is what i know but i am sorry if this doesn't help