To find the mole of a substance, you take the mass divided by the molar mass of that substance~
Answer:
a. 2,9x10⁻⁴ M HCl
Explanation:
A solution is considered acidic when its concentration of H⁺ is higher than 1x10⁻⁷. The higher concentration of H⁺ will be the most acidic solution.
a. 2,9x10⁻⁴ M HCl. In water, this solution dissolves as H⁺ and Cl⁻. That means concentration of H⁺ is 2,9x10⁻⁴ M.
b. 4,5x10⁻⁵M HNO₃. In the same way, concentration of H⁺ is 4,5x10⁻⁵M.
c. 1,0x10⁻⁷M NaCl. As this solution doesn't produce H⁺, the solution is not acidic
d. 1,5x10⁻²M KOH. This solution produce OH⁻. That means the solution is basic nor acidic.
Thus, the solution considered the most acidic is a. 2,9x10⁻⁴ M HCl, because has the higher concentration of H⁺.
I hope it helps!
Answer:
<u></u>
<u></u>
- <u>b. See the description below</u>
Explanation:
<u><em>a. Volume of 0.400 M CuSO₄(aq) required for the preparation</em></u>
In dissolutions, since the number of moles of solute is constant, the equation is:

Substitute and solve for V₁


<u><em>b. Briefly describe the essential steps to most accurately prepare the 0.150 M CuSO₄(aq) from the 0.400 M CuSO₄(aq)</em></u>
You will use the stock solution, the funnel, the buret, and distilled water.
i) Using the funnel, fill in the buret with with 50 ml of the stock solution, i.e. the 100. ml of 0.400 M CuSO₄(aq) solution.
ii) Pour 37.5 ml of the stock solution from the burete into the volumetric flask.
iii) Carefully add disitlled water to the 37.5ml of the stock solution in the volumetric flask until the mark (50 ml) on the volumetric flask.
iv) Put the stopper and rotate the volumetric flask to homegenize the solution.