Answer:
1. Define the problem
2. Conduct a literature search
3. Propose a hypothesis
4. Devise an experiment to prove or disprove
5. State conclusions
Explanation: In order to begin an experiment, you must first define a problem or question that you will be answering. Then you must research the problem in order to form a hypothesis, or an educated guess. Then you should devise and execute an experiment to answer your question. The conclusions that you draw will either prove or disprove your hypothesis. Hope this helps!
Answer : The 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.
Explanation :
Galvanic cell : It is defined as a device which is used for the conversion of the chemical energy produces in a redox reaction into the electrical energy. It is also known as the voltaic cell or electrochemical cell.
In the galvanic cell, the oxidation occurs at an anode which is a negative electrode and the reduction occurs at the cathode which is a positive electrode.
We are taking the value of standard reduction potential form the standard table.
![E^0_{[Ag^{+}/Ag]}=+0.80V](https://tex.z-dn.net/?f=E%5E0_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D%3D%2B0.80V)
![E^0_{[Cu^{2+}/Cu]}=+0.34V](https://tex.z-dn.net/?f=E%5E0_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D%3D%2B0.34V)
In this cell, the component that has lower standard reduction potential gets oxidized and that is added to the anode electrode. The second forms the cathode electrode.
The balanced two-half reactions will be,
Oxidation half reaction (Anode) : 
Reduction half reaction (Cathode) : 
Thus the overall reaction will be,

From this we conclude that, 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.
Hence, the 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.
<span>False,
This is because when you can easily ionize and atom or the chances of it being ionizable are quite high, it means that that particular atom have very low ionization potential that is the reason why it was easily ionizable
An atom with a high ionization power and a firmly negative electron fondness will both pull in electrons from different particles and oppose having its electrons taken away; it will be an exceedingly electronegative molecule.</span>