Answer:
<h2>The sequence is; b, e, a, d, c
</h2>
Explanation:
1. In a decomposition reaction; One reactant is broken down into two or more than two products is called decomposition.
2. A combustion reaction; A fuel is combined with oxygen to produce carbon dioxide and water, this reaction is called combustion reaction.
3. A synthesis reaction; it occurs when two or more reactants combine to form one product is known as synthesis reaction.
4. Double Replacement Reaction; Two compounds react to form two different compounds is known as double Replacement Reaction.
5. A single replacement reaction; occurs when a compound reacts with an element to form a new compound , this reaction is called as single replacement reaction.
Because the sublevels 1s only has one shape ,and it only contains 2 elections...
Answer:
A)
1. Reaction will shift rightwards towards the products.
2. It will turn green.
3. The solution will be cooler..
B) It will turn green.
Explanation:
Hello,
In this case, for the stated equilibrium:

In such a way, by thinking out the Le Chatelier's principle, we can answer to each question:
A)
1. If potassium bromide, which adds bromide ions, is added more reactant is being added to the solution, therefore, the reaction will shift rightwards towards the products.
2. The formation of the green complex is favored, therefore, it will turn green.
3. The solution will be cooler as heat is converted into "cold" in order to reestablish equilibrium.
B) In this case, as the heat is a reactant, if more heat is added, more products will be formed, which implies that it will turn green.
Regards.
<u>Answer:</u> The time taken by the reaction is 84.5 seconds
<u>Explanation:</u>
The equation used to calculate half life for first order kinetics:

where,
= half-life of the reaction = 9.0 s
k = rate constant = ?
Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
......(1)
where,
k = rate constant = 
t = time taken for decay process = 50.7 sec
= initial amount of the reactant = ?
[A] = amount left after decay process = 0.0741 M
Putting values in equation 1, we get:
![0.077=\frac{2.303}{50.7}\log\frac{[A_o]}{0.0741}](https://tex.z-dn.net/?f=0.077%3D%5Cfrac%7B2.303%7D%7B50.7%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B0.0741%7D)
![[A_o]=3.67M](https://tex.z-dn.net/?f=%5BA_o%5D%3D3.67M)
Now, calculating the time taken by using equation 1:
![[A]=0.0055M](https://tex.z-dn.net/?f=%5BA%5D%3D0.0055M)

![[A_o]=3.67M](https://tex.z-dn.net/?f=%5BA_o%5D%3D3.67M)
Putting values in equation 1, we get:

Hence, the time taken by the reaction is 84.5 seconds