We are given the area of the region under the curve of the function f(x) = 5x + 7 with an interval [1, b] which is 88 square units where b > 1
We need to find the integral of the function f(x) = 5x + 7 with the limits 1 and b
5/2 x^2 + 7x (limits: 1, b)
substitute the limits:
5/2 (1^2) + 7 (1) - 5/2 b^2 + 7b = 0
solve for b
Then after solving for b, this would be your interval input with 1: [1, b].<span />
Answer:
x =
7
Step-by-step explanation:
= 49
can equal 7 or -7
7 x 7 = 49. -7 x -7 = 49
Answer:
Non-existent is the answer.