1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kruka [31]
3 years ago
13

Water flows through a pipe at an average temperature of T[infinity] = 70°C. The inner and outer radii of the pipe are r1 = 6 cm

and r2 = 6.5 cm, respectively. The outer surface of the pipe is wrapped with a thin electric heater that consumes 300 W per m length of the pipe. The exposed surface of the heater is heavily insulated so that all heat generated in the heater is transferred to the pipe. Heat is transferred from the inner surface of the pipe to the water by convection with a heat transfer coefficient of h = 85 W/m2⋅K. Assume that the thermal conductivity is constant and the heat transfer is one-dimensional. Express the mathematical formulation (the differential equation and the boundary conditions) of the heat conduction in the pipe during steady operation.
Engineering
1 answer:
Paul [167]3 years ago
6 0

Answer:

The differential equation and the boundary conditions are;

A) -kdT(r1)/dr = h[T∞ - T(r1)]

B) -kdT(r2)/dr = q'_s = 734.56 W/m²

Explanation:

We are given;

T∞ = 70°C.

Inner radii pipe; r1 = 6cm = 0.06 m

Outer radii of pipe;r2 = 6.5cm=0.065 m

Electrical heat power; Q'_s = 300 W

Since power is 300 W per metre length, then; L = 1 m

Now, to the heat flux at the surface of the wire is given by the formula;

q'_s = Q'_s/A

Where A is area = 2πrL

We'll use r2 = 0.065 m

A = 2π(0.065) × 1 = 0.13π

Thus;

q'_s = 300/0.13π

q'_s = 734.56 W/m²

The differential equation and the boundary conditions are;

A) -kdT(r1)/dr = h[T∞ - T(r1)]

B) -kdT(r2)/dr = q'_s = 734.56 W/m²

You might be interested in
Before finishing and installing a shelved cabinet you just constructed, you need to check the
Greeley [361]

Answer:

Carpenter's square

Explanation:

The most common hand tool used to measure or set angles with its application extending to setting angles of roofs and rafters. Another name of a Carpenter's square is a framing square.

Other hand tools that are used to measure angles are;

  • The combination square that allows a user to set both 90°  and 45° angles
  • A Bevel that allows users to set any angle they like.
  • A Protractor that resembles a bevel but its marks are marked in an arc.
  • An electromagnetic angle finder which gives a reading according to the measure of the arms adjusted by the user.
7 0
3 years ago
Which of the following is NOT associated with Urban Sprawl?
pochemuha

The option that is not associated with the given term called urban sprawl is; Option A: Blocking high views

What is Urban Sprawl?

Urban sprawl is defined as the rapid expansion of the geographic boundaries of towns and cities which is often accompanied by low-density residential housing and increased reliance on the private automobilefor movement.

Looking at the given options, "blocking high views" is the option that is not typically a problem associated with urban sprawl because urbanization usually takes place on relatively flat levels.

The missing options are;

a. blocking high views

b. destroying animal habitats

c. overrunning farmland

d. reducing green space

Read more about urban sprawl at; brainly.com/question/504389

8 0
2 years ago
A reservoir delivers water to a horizontal pipeline 39 long The first 15 m has a diameter of 50 mm, after which it suddenly beco
allsm [11]

Answer:

The difference of head in the level of reservoir is 0.23 m.

Explanation:

For pipe 1

d_1=50 mm,f_1=0.0048

For pipe 2

d_2=75 mm,f_2=0.0058

Q=2.8 l/s

Q=2.8\times 10^{-3]

We know that Q=AV

Q=A_1V_1=A_2V_2

A_1=1.95\times 10^{-3}m^2

A_2=4.38\times 10^{-3} m^2

So V_2=0.63 m/s,V_1=1.43 m/s

head loss (h)

h=\dfrac{f_1L_1V_1^2}{2gd_1}+\dfrac{f_2L_2V_2^2}{2gd_2}+0.5\dfrac{V_1^2}{2g}

Now putting the all values

h=\dfrac{0.0048\times 15\times 1.43^2}{2\times 9.81\times 0.05}+\dfrac{0.0058\times 24\times 0.63^2}{2\times 9.81\times 0.075}+0.5\dfrac{1.43^2}{2\times 9.81}

So h=0.23 m

So the difference of head in the level of reservoir is 0.23 m.

8 0
3 years ago
Several different loads are going to be used with the voltage divider from Part A. If the load resistances are 300 kΩkΩ , 200 kΩ
harina [27]

Answer:

attached below

Explanation:

7 0
3 years ago
Fire extinguishers need to be checked _______ to make sure they are working properly.
Zepler [3.9K]

Answer:

Answer D

Explanation:

They need to be checked monthly

3 0
2 years ago
Read 2 more answers
Other questions:
  • a. Determine R for a series RC high-pass filter with a cutoff frequency (fc) of 8 kHz. Use a 100 nF capacitor. b. Draw the schem
    7·1 answer
  • Air at 38°C and 97% relative humidity is to be cooled to 14°C and fed into a plant area at a rate of 510m3/min. (a) Calculate th
    11·1 answer
  • Three single-phase, 10 kVA, 2400/280 V, 60-Hz transformers are connected to form a three-phase, 2400/480 V transformer The equiv
    15·1 answer
  • How to go about the designing of a multirange voltmeter​
    8·1 answer
  • This search compares the target value with the middle element in the collection, then ignores the half of the collection in whic
    11·1 answer
  • When you come to an intersection, follow the _________ before you proceed.
    6·2 answers
  • ASAP correct answer plss When you are driving, if you see this traffic sign it means
    8·1 answer
  • Drag each label to the correct location on the table. Match to identify permanent and temporary structures.
    15·1 answer
  • What is photosynthesis​
    9·2 answers
  • What is the importance of the causal link<br> in work accidents?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!