1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana [24]
3 years ago
12

Calculate the resistance using Voltage and current, again using voltage and power, again using current and power, and again usin

g R1 and R2 recording the calculations for Run 3 rows 41-56
Engineering
1 answer:
ale4655 [162]3 years ago
6 0

Answer:

R = V / I ,   R = V² / P,     R = P / I²

Explanation:

For this exercise let's use ohm's law

      V = I R

      R = V / I

Electric power is defined by

      P = V I

ohm's law

      I = V / R

we substitute

      P = V (V / R)

      P = V² / R

      R = V² / P

 

the third way of calculation

      P = (i R) I

      P = R I²

      R = P / I²

You might be interested in
A slab-milling operation is performed on a 0.7 m long, 30 mm-wide cast-iron block with a feed of 0.25 mm/tooth and depth of cut
denis23 [38]

Answer:

a)  T_m=1.787min

b)  MRR=35259.7mm^3/min

Explanation:

From the question we are told that:

Cast-iron block Dimension:

Lengthl=0.7m=>700mm

Width w=30mm

FeedF=0.25mm/tooth

Depth dp=3mm

Diameter d=75mm

Number of cutting teeth n=8

Rotation speed N=200rpm

Generally the equation for Approach is mathematically given by

x=\sqrt{Dd-d^2}

X=\sqrt{75*3-3^2}

X=14.69mm

Therefore

Effective length is given as

L_e=Approach +object Length

L_e=700+14.69

L_e=714.69mm

a)

Generally the equation for Machine Time is mathematically given by

T_m=\frac{L_e}{F_m}

Where

F_m=F*n*N

F_m=0.25*8*200

F_m=400

Therefore

T_m=\frac{714.69}{400}

T_m=1.787min

b)

Generally the equation for Material Removal Rate. is mathematically given by

MRR=\frac{L*B*d}{t_m}

MRR=\frac{700*30*3}{1.787}

MRR=35259.7mm^3/min

3 0
2 years ago
Determine (with justification) whether the following systems are (i) memoryless, (ii) causal, (iii) invertible, (iv) stable, and
lina2011 [118]

Answer:

a.

y[n] = x[n] x[n-1]  x[n+1]

(i) Memory-less - It is not memory-less because the given system is depend on past or future values.

(ii) Causal - It is non-casual because the present value of output depend on the future value of input.

(iii) Invertible - It is invertible and the inverse of the given system is \frac{1}{x[n] . x[n-1] x[n+1]}

(iv) Stable - It is stable because for all the bounded input, output is bounded.

(v) Time invariant - It is not time invariant because the system is multiplying with a time varying function.

b.

y[n] = cos(x[n])

(i) Memory-less - It is memory-less because the given system is not depend on past or future values.

(ii) Causal - It is casual because the present value of output does not depend on the future value of input.

(iii) Invertible - It is not invertible because two or more than two input values can generate same output values .

For example - for x[n] = 0 , y[n] = cos(0) = 1

                       for x[n] = 2\pi , y[n] = cos(2\pi) = 1

(iv) Stable - It is stable because for all the bounded input, output is bounded.

(v) Time invariant - It is time invariant because the system is not multiplying with a time varying function.

3 0
2 years ago
1. Which of the following will cause a spark knock?
zlopas [31]

Answer:

I couldn't find options for your question online, but I can give you an explanation so you can choose the correct option.

Explanation:

A spark knock is a form of unpredictable behavior that occurs in combustion, that is, in the chemical reaction that occurs between oxygen and an oxidizable material. Such combustion is usually manifested by incandescence or flame.

The spark knock is a detonation that occurs when there is a lot of pressure in the fuel.

<u>Some situations in which this can happen are: </u>

  • Engine overloaded.
  • Maximum pressure in the cylinders.
  • Engine overheated.
  • Overheated air.
  • Long and excessive engine ignition timing.
  • Spark plug at high temperatures.
5 0
3 years ago
Explain three (3) modes of heat transfer in air conditioning system.
LenKa [72]

Answer:

1. Conduction

2. Convection

3. Radiation

Explanation:

The 3 modes of heat transfer i an air conditioning system:

1. Conduction:

The transfer of heat by conduction  takes place in solid and is when the conduction takes place as a result of direct contact in between the interacting material which transfer the heat energy from particle to particle thus conducting the heat through out the system.

2. Convection:

The other mode for the transfer of heat which takes place especially in fluids - gases and liquids is through the technique of convection in which the transfer of heat takes place by the circular motion of the atoms and molecules of the fluid which carries the heat energy and results in the distribution of the heated fluid in the entire system thus transferring all the heat energy in the entire system.

3. Radiation:

The third mode of heat transfer in the air conditioning system is through radiation. This method transfers the heat by making use of the electro-magnetic radiation in the infra red spectrum where the waves of the spectrum transfers the heat energy with the help of a medium or without any medium at all.

Thus making the radiation method of heat transfer as the only method out of the three methods which does not require the material medium for the transfer of heat energy.

4 0
3 years ago
To increase the thermal efficiency of a reversible power cycle operating between thermal reservoirs at TH and Tc, would you incr
alukav5142 [94]

<u></u>\ T_{c} has greater effect.

<u>Explanation</u>:

\eta_{\max }=1-\frac{T_{c}}{T_{A}}

T_{c}\\ = Temperature of cold reservoir

T_{H} = Temperature of hot reservoir

when T_{c} is decreased by 't',

$\eta_{\text {incre }}$ = 1-\frac{\left(\tau_{c}-t\right)}{T_{H}}

=n \ + \frac{t}{T_{n}}      -(i)

when {T_{H}} is increased by 'T'

\eta_{i n c}=\frac{n+\frac{t}{T_{H}}}{\left(1+\frac{k}{T_{H}}\right)}-(ii)

\eta_{\text {incre }} \ T_{c}>\eta_{\text {incre }} T_{\text {H }}

7 0
3 years ago
Other questions:
  • What is centrifugal force with respect to unbalance? What is the formula used to determine centrifugal force?
    12·1 answer
  • 11.A heat engine operates between two reservoirs at 800 and 20°C. One-half of the work output of the heat engine is used to driv
    6·1 answer
  • What is the purpose of a heater core
    5·2 answers
  • An MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner’s 2.00 T field with his f
    5·1 answer
  • A block of mass M rests on a block of mass M1 = 5.00 kg which is on a tabletop. A light string passes over a frictionless peg an
    14·1 answer
  • Estimate the uncertainty in a 22 m/sec air velocity measurement using a Pitot tube at 20C. Assume the atmospheric pressure is 1
    7·1 answer
  • Some wire of radius is 1.262mm has a resistance of 20Ω. Determine the resistance of a wire of the same length and material if th
    14·2 answers
  • An ideal vapor-compression refrigeration cycle using refrigerant-134a as the working fluid is used to cool a brine solution to −
    12·1 answer
  • Proper handling of blueprints includes which of the following
    5·1 answer
  • Ferroconcrete is reinforced concrete that combines concrete and ________. A. Lead c. Copper b. Iron d. Aluminum.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!