Answer:
If you were traveling away from earth at speed 0.5c, you wouldn't notice any change in your heartbeat, you won't notice your mass, height and waistline change. This is because you are on the same frame of reference as the ship in spacetime and any measurement done from the ship will give normal readings from an observer on the ship.
For an observer on earth, your heartbeat will be seen to slowdown (because your time on the ship will be perceived to slow down to an
observer on earth). Also, your mass will be seen to increase, you height will also be seen to increase, and your waistline will be seen to decrease when viewed from earth.
Because the move through water
Answer:
11.85 kg m/s
Explanation:
impulse = mass ( change in velocity )
= mass ( final velocity - initial velocity )
= 0.150 ( 32.0 - (-47.0))
= 0.150 ( 32.0 +47.0)
= 0.150 (79)
= 11.85 kg m/s
The applied force is different for the two cases
The case A with a greater force involves the greatest momentum change
The case A involves the greatest force.
<h3>What is collision?</h3>
- This is the head-on impact between two object moving in opposite or same direction.
The initial momentum of the two ball is the same.
P = mv
where;
- m is the mass of each
- v is the initial velocity of each ball
Since the force applied by the arm is different, the final velocity of the balls before stopping will be different.
Thus, the final momentum of each ball will be different
The impulse experienced by each ball is different since impulse is the change in momentum of the balls.
J = ΔP
The force applied by the rigid arm is greater than the force applied by the relaxed arm because the force applied by the rigid arm will cause the ball to be brought to rest faster.
Thus, we can conclude the following;
- The applied force is different for the two cases
- The case A with a greater force involves the greatest momentum change
- The case A involves the greatest force.
Learn more about impulse here: brainly.com/question/25700778